sendi, lodofitus olentus sendi (2025) SKRIPSI PENGARUH PDRB, TINGKAT PENGANGGURAN DAN IPM TERHADAP KEMISKINAN ( Studi Kasus 10 Provinsi Termiskin di Indonesia). [Tugas Akhir/Skripsi]
|
Text
abstrak.pdf Download (1MB) |
|
|
Text
file bab I.pdf Restricted to Repository staff only Download (243kB) |
|
|
Text
file bab II - Copy.pdf Restricted to Repository staff only Download (324kB) |
|
|
Text
file bab III.pdf Restricted to Repository staff only Download (304kB) |
|
|
Text
file bab IV.pdf Restricted to Repository staff only Download (384kB) |
|
|
Text
file bab V penutup.pdf Restricted to Repository staff only Download (186kB) |
|
|
Text
file daftar pustaka.pdf Download (250kB) |
|
|
Text
file lampiran.pdf Restricted to Repository staff only Download (305kB) |
|
|
Text
jurnal sendi19410008.pdf Restricted to Repository staff only Download (388kB) |
|
|
Text
hasil turnitin.pdf Restricted to Repository staff only Download (1MB) |
|
|
Text
presentase.pdf Download (187kB) |
Abstract
ABSTRAK Studi ini menginvestigasi dampak output ekonomi regional, kondisi ketenagakerjaan, dan kualitas pembangunan manusia terhadap prevalensi kemiskinan di sepuluh wilayah dengan tingkat kemiskinan tertinggi di Indonesia selama periode 2019-2024. Metodologi yang diterapkan adalah pendekatan kuantitatif melalui teknik ekonometrika dengan model panel data. Wilayah yang menjadi fokus penelitian dipilih secara purposif berdasarkan persentase penduduk miskin terbesar, mencakup Papua (26,43%), NTT (20,83%), Bengkulu (14,37%), Aceh (14,02%), NTB (13,18%), DI Yogyakarta (12,07%), Sumatera Selatan (11,83%), Jawa Tengah (11,24%), Jawa Timur (10,99%), dan Sumatera Utara (8,64%). Informasi yang digunakan bersumber dari publikasi resmi BPS, Kementerian Keuangan RI, dan Bappenas. Proses analisis dilakukan menggunakan software E-Views dengan menerapkan Fixed Effect Model yang terpilih melalui pengujian Chow dan Hausman. Temuan menunjukkan bahwa seluruh variabel independen memberikan dampak signifikan terhadap kemiskinan. IPM memiliki pengaruh negatif yang bermakna dengan koefisien -0,789, mengindikasikan bahwa peningkatan kualitas hidup dapat menekan angka kemiskinan. PDRB menunjukkan pengaruh positif yang signifikan dengan koefisien 0,0000038, menggambarkan bahwa ekspansi ekonomi yang tidak inklusif justru memperparah kondisi kemiskinan. Kondisi pengangguran terbukti berkorelasi positif signifikan dengan kemiskinan (koefisien 0,372). Secara bersamaan, ketiga faktor tersebut berpengaruh signifikan terhadap kemiskinan dengan nilai R² mencapai 0,997, menandakan bahwa 99,7% variasi kemiskinan dapat diterangkan melalui model penelitian ini. Kata Kunci: Provinsi termiskin, Indonesia ABSTRACT This study investigates the impact of regional economic output, employment conditions, and human development quality on poverty prevalence in ten regions with the highest poverty rates in Indonesia during the period 2019-2024. The methodology applied is a quantitative approach using econometric techniques with a panel data model. The research focus areas were selected purposively based on the highest percentage of poor population, including Papua (26.43%), NTT (20.83%), Bengkulu (14.37%), Aceh (14.02%), NTB (13.18%), DI Yogyakarta (12.07%), South Sumatra (11.83%), Central Java (11.24%), East Java (10.99%), and North Sumatra (8.64%). The information used is sourced from official publications of BPS, the Ministry of Finance of the Republic of Indonesia, and Bappenas. The analysis process was conducted using E-Views software, applying the Fixed Effect Model selected through Chow and Hausman tests. The findings indicate that all independent variables have a significant impact on poverty. IPM has a significant negative impact with a coefficient of -0.789, indicating that an increase in the quality of life can reduce poverty rates. PDRB shows a significant positive influence with a coefficient of 0.0000038, indicating that non-inclusive economic expansion actually worsens poverty conditions. Unemployment is proven to be significantly positively correlated with poverty (coefficient 0.372). Simultaneously, these three factors significantly influence poverty, with an R² value of 0.997, indicating that 99.7% of the variation in poverty can be explained by this research model. Keywords: Poorest province, Indonesia
| Item Type: | Tugas Akhir/Skripsi |
|---|---|
| Subjects: | H Social Sciences > HN Social history and conditions. Social problems. Social reform |
| Divisions: | Faculty of Economic and Business > Development Economics Study Program |
| Depositing User: | lofofitus olentus sendi |
| Date Deposited: | 27 Oct 2025 03:10 |
| Last Modified: | 27 Oct 2025 03:10 |
| URI: | http://erepository.uwks.ac.id/id/eprint/21388 |
Actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year

