An intestinal Candida albicans model for monomicrobial and polymicrobial biofilms and effects of hydrolases and the Bgl2 ligand

Purbowati, Rini (2022) An intestinal Candida albicans model for monomicrobial and polymicrobial biofilms and effects of hydrolases and the Bgl2 ligand. Veterinary World-India. (Unpublished)

[img] Text
3. CEK PLAGIASI An intestinal Candida albicans model for monomicrobial and polymicrobial biofilms and effects of hydrolases and the Bgl2 ligand.pdf

Download (4MB)

Abstract

Abstract Background and Aim: Candida albicans is the most prevalent human fungal pathogen. In biofilms, C. albicans becomes more resistant to antifungal agents because of the production of an extracellular matrix (ECM) that protects the yeast cells. This study aimed to determine the effects of hydrolase enzymes and the Bgl2 ligand on monomicrobial and polymicrobial biofilms. Materials and Methods: Biofilm induction in rats was carried out using streptomycin (25 mg/kg) and gentamicin (7.5 mg/kg) administered orally once per day for 5 days. Rats were injected subcutaneously with cortisone acetate (225 mg/kg) as an immunosuppressant on day 5. In addition, rats were orally administered C. albicans for the single microbial model and a combination of C. albicans with Escherichia coli for the polymicrobial model. Following the biofilm production, the groups were treated with glucosamine (8.57 mg/kg body weight) and Achatina fulica hydrolases (1.5 mL) orally for 2 weeks. The reduction of the biofilm was measured using confocal laser scanning microscopy (CLSM). Data were analyzed using a t-test, with a significance value of 95%. Results: CLSM images revealed a strong association between C. albicans and E. coli in the polymicrobial biofilm. On the contrary, the combination treatment using glucosamine and A. fulica hydrolases reduced the ECM of the single microbial biofilm (53.58%). However, treatment effectiveness against the matrix (19.17%) was reduced in the polymicrobial model. Conclusion: There is a strong association between C. albicans and E. coli in the formation of polymicrobial biofilms. The combination of glucosamine and the A. fulica enzyme can reduce the single microbial biofilm ECM; however, it is ineffective in the polymicrobial model. Keywords: Achatina fulica hydrolases, Bgl2 ligand, Candida albicans, Escherichia coli, intestinal polymicrobial biofilm.

Item Type: Other
Subjects: R Medicine > R Medicine (General)
Divisions: Faculty of Medicine > Medicine Study Program
Depositing User: Sulimin BP3
Date Deposited: 28 Dec 2022 04:26
Last Modified: 28 Dec 2022 04:26
URI: http://erepository.uwks.ac.id/id/eprint/13474

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year