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28.1 Introduction

Multipotent mesenchymal stromal cells (MSCs) are able to
differentiate in vitro into adipocytes, osteoblasts and chondro
cytes [1] and into bone in vivo.MSCs have nowbeen isolated from
multiple organs and they formpart of the endothelialwall of blood
vessels [2,3]. In addition, they are a key component of tumor
stroma and have been found to play important roles in various
cancers [4]. Tumors, havingmany of the characteristics of injured
tissue, may attract MSCs from their local tissue or from the
circulation. The tumor tropism property of MSCs has suggested
the possibility of their use as vehicles to deliver anticancer drugs or
genes. However, extensive experimental research has demon
strated both anti- and procancer roles of MSCs in a context
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dependent manner. It is now generally assumed that within this
microenvironment reciprocal tumor–stroma crosstalk influences
the phenotype of tumor cells, their progression, and their metas
tasis [5]. Various studies have reported the tumor-promoting
effects ofMSCs [6–8]. Others have provided evidence for an anti-
oncogenic role of these cells [9–12]. MSCs are emerging as
vehicles for anticancer drug/gene delivery [7]. This chapter
aims to dissect this observed discrepancy in different experimen
tal settings of human cancer so as to provide possible guidance to
the appropriateness of clinical applications.

28.2 Origin and identification of
mesenchymal stromal cells in the
tumor microenvironment

MSCs were initially identified by placing whole bone marrow
cells in plastic culture dishes and observing the subsequent
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Figure 28.1 Mechanisms for the recruitment of MSCs into tumors. MSCs express chemokine receptors, intercellular adhesion molecule (ICAM), C–C
motif chemokine receptor (CCR)1–2, CCR4–10, C–X–C motif chemokine receptor (CXCR)1–6, and toll-like receptors (TLRs). Tumors release various
cytokines, chemokines, and growth factors, including basic fibroblast growth factor (bFGF), stromal cell-derived factor 1 (SDF-1), hepatocyte growth
factor (HGF), interleukin (IL)-1β, vascular cell adhesion molecule 1 (VCAM-1), and vascular endothelial growth factor (VEGF)-A, acting as
chemoattractants for MSCs. MSCs in the local organ or tissue or circulating MSCs may be recruited into the tumor. MSCs may be constantly recruited in
different stages from chronic infection, injury, and inflammation to cancer development.

expansion of a rare population of plastic-adherent cells [13,14].
The spatial distribution and properties of MSCs within their
organ/tissue in vivo are relatively unclear [15]. MSCs have been
isolated from most organs, including kidney, umbilical cord,
brain, liver, lung, and bone marrow [16–18], and may have
unique properties depending on their source. Recruited by the
inflammatory milieu, MSCsmigrate to themicroenvironment of
tumors and orchestrate the hallmarks of cancer cells [19]. The
enrichment of MSCs in the tumor environment has been
reported in both primary human cancers [20,21] and in metas
tases [22–24]. A resident population of MSCs has also been
identified in the human adult liver and express a unique gene
signature [25]. Additionally, MSCs share a molecular signature
with mesenchymal tumor cells and favor early tumor growth in
mice [26].
In response to injury or infection, MSCs can be released from

the bone marrow and migrate toward sites of injury to promote
tissue regeneration [27]. High frequencies of MSCs have been
found in tumors with extensive inflammation, suggesting the
recruitment of MSCs in response to inflammation [20]. Addi
tionally, high circulating levels of endothelial progenitor cells
have been observed in many cancer patients, which might also
home to the site of tumors and promote tumor growth [28–30].
MSCs may be recruited locally and/or from the circulation to
tumor sites (Figure 28.1). Future studies using somatic genomic
signatures may provide a definite answer.

28.3 The migratory capacity of
mesenchymal stromal cells

MSCs tend to be recruited by injured tissue, where they are
thought to contribute to tissue repair andwound healing [31]. As
tumors are often considered to have many characteristics of
injured tissues, it is not surprising to find MSCs enriched within
tumors. Various preclinical models have confirmed that MSCs

can migrate to certain types of tumors, and this is one of the
rationales of using MSCs as vehicles for anticancer drug/gene
delivery [7,32]. MSCs are also relatively resistant to ischemia,
because in the absence of oxygen they can survive by anaerobic
adenosine triphosphate production [33], which may give them a
competitive advantage in a tumor microenvironment. The
tumor-tropic migratory property of MSCs is attributed to two
main mechanisms [34,35].

28.3.1 Intrinsic migratory properties of
mesenchymal stromal cells

Activated human MSCs express adhesion molecules such as
integrins, ICAM-1, ICAM-2, and VCAM-1, which enable these
cells to migrate [36]. MSCs also express chemokine receptors,
including CCR1, CCR2, CCR4, CCR6, CCR7, CCR8, CCR9,
CCR10, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6,
and CX3CR [31]. Production of their respective ligands is a
characteristic of inflamed tissue and malignant tissue, and thus
these receptors are likely involved in the specific accumulation of
MSCs in both processes. Thus, the cognate ligands of these
receptors are efficient chemotactic stimuli for MSCs. Additional
receptors implicated in MSC migration are the TLRs. TLR1–6
have been identified in human MSCs and it has been reported
that TLR stimulation enhanced the migratory function of
MSCs [37].

28.3.2 Stimuli produced by the tumor
Malignant cells have been shown to produce relatively high
amounts of MSC chemoattractants, including HGF, SDF-1
(also known as CXCL12), bFGF, VEGF-A, and VCAM
1 [38,39]. Tumor-derived IL-1β has been found to be a mediator
of the proinflammatory response in MSCs exposed to tumor
conditioned media, a mechanism that is regulated by focal
adhesion kinase and mitogen-activated protein kinase
signaling [40].
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28.4 Context-dependent role of
mesenchymal stromal cells in the
tumor microenvironment

The tumor microenviroment is substantially different from that
of normal organs and this is a mechanism in cancer develop
ment [41]. Depending on the experimental conditions, MSCs
can exert tumor-promoting [20,24,42,43] or tumor-limiting
effects [9,11,12,44,45]. Various hypotheses have been postulated

Figure 28.2 Context-dependent role of
MSCs in the tumor microenvironment.
MSCs can exert tumor-promoting or tumor-
limiting effects, which depend on the
context in which the MSCs are present. (a)
Different sources of MSCs, the presence of
ligands, cytokine-primed MSCs, and the
hypoxic microenvironment may lead to
different effects of MSCs in the tumor
microenvironment. The properties of the
MSCs and the particular tumor
microenvironment may result in dual roles
for MSCs that can either suppress or
promote tumor progression. (b) The tumor-
suppressive mechanisms are mainly
mediated by MSC microvesicles and
downregulation of the Wnt and nuclear
factor kappa light chain-enhancer of
activated B cells (NF-κB) pathway. The
tumor-promoting mechanisms are mainly
attributed to factors secreted by MSCs and
direct effects such as support of tumor
vasculature, epithelial to mesenchymal
transition (EMT) transition, and
extracellular matrix (ECM) remodeling.
BM-MSCs,: bone-marrow-derived MSCs; A-
MSCs: adipose-derived MSCs; UC-MSCs:
umbilical-cord-derived MSCs; BMP4: bone
morphogenetic protein 4; IFN: interferon;
LPS: lipopolysaccharide; TNF-α: tumor
necrosis factor-α.

to explain the context-dependent role of MSCs in cancer
(Figure 28.2a).

28.4.1 Hypotheses on context-dependent roles
of mesenchymal stromal cells in cancer

28.4.1.1 Phase-dependent hypothesis
MSCs appear to promote tumor growth when co-injected with
tumor cells, but inhibit tumor progression when administered
into established tumors [4]. Thus, the presence of MSCs during
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the early phase of tumorigenesis may contribute to angiogenesis
that is required for tumor initiation. An increase in blood vessel
density was observed when MSCs were co-injected with tumor
cell lines [8,46].

28.4.1.2 Priming-dependent hypothesis
MSCs express several TLRs, and their ability to migrate, invade,
and secrete immune modulating factors is tightly regulated by
specific TLR-agonist engagement [47]. TLR4-primed MSCs are
polarized into a proinflammatory MSC type 1 (MSC1) pheno
type, whereas TLR3-primedMSCs are polarized into the classical
immunosuppressive MSC2 phenotype [47]. MSC1-based treat
ment of established tumors in an immune competent model
attenuated tumor growth and metastasis, but MSC2-treated
animals displayed increased tumor growth and metastasis [48].
The priming of all MSC types with inflammatory cytokines such
as IFN-γ and TNF-α results in higher levels of VEGF [19] and
induction of inhibition of runt-related transcription factor 2, one
of the pivotal factors driving osteoblast differentiation [49].
These effects, in turn, can enhance tumor progression. However,
stimulation ofMSCs with IFN-α and IFN-β decreased tumor cell
proliferation and induced tumor cell apoptosis in amousemodel
of melanoma [50,51]. BMP4-differentiated bone marrow MSCs
became less suppressive of T cell and natural killer (NK) cell
proliferation and switched on their suppressive machinery by
activating both indolamine 2,3-dioxygenase (IDO) and cyclo
oxygenase 2 (COX-2), promoting the differentiation of neigh
boringMSCs and triggering the anti-inflammatory effect [52]. In
contrast, preconditioning of MSCs with TGF-β1 resulted in
proinvasive MSCs in the progression of colon cancer [53].

28.4.1.3 Hypoxic-dependent hypothesis
A long-term hypoxic microenvironment may lead to
undifferentiated tumor cells and stromal cells, providing essen
tial cellular interactions accompanied by the upregulation of the
stemness genes [54,55]. Permanent hypoxia-stimulated MSCs
proliferated and reduced their capacity to differentiate [56,57].
However, short-term oxygen limitation increased the number of
apoptotic MSCs after 3–24 h of hypoxic treatment [58,59].
Moreover, oxygen limitation in hypoxia–reoxygenation-induced
cell apoptosis was mediated in part by the reduction of phos
phorylation of Akt and extracellular signal-regulated kinase 1/2
(ERK1/2) in MSCs [60]. ERK1/2 belongs to the class of protein
kinase signal transduction pathways that are used to relay
numerous extracellular signals within cells and have been
reported to be involved in various cellular functions, including
apoptosis and proliferation [61]. Hypoxia switches on various
signaling pathways, and its context dependency determines the
overall cell response and alterations in MSC functions.
Collectively, tumor cells and the tumor microenvironment

will affect the ultimate function of recruited MSCs. However,
there are some factors that drive MSCs to suppress or promote
tumor growth (Figure 28.2b).

28.4.2 The tumor-suppressing roles of
mesenchymal stromal cells

Extensive studies have reported tumor-suppressing effects of
MSCs in various experimental cancer models. A variety of
processes and mechanisms possibly implicated in MSC-depen
dent tumor suppression have been studied.

28.4.2.1 Effect on cell signaling
Several signaling pathways have been reported to be associated
with MSC suppression of tumor growth. Wnt signaling is
aberrantly activated in many types of tumors. In chemically
induced murine liver tumors the administration of MSCs has
been demonstrated to have tumor suppressive effects associated
with Wnt signaling. Its target genes were downregulated, espe
cially those related to antiapoptosis, mitogenesis, cell prolifera
tion, and cell cycle regulation [62]. MSCs can secrete Wnt
inhibitors, such as Dickkopf-1 [52,63]. MSC-dependent inhibi
tion of NF-κB signaling in cancer cells also occurs [64]. In
addition, TLR signals can stimulate downstream effectors that
may interfere with the LPS–TLR4 pathway and inhibit NF-κB
activation during liver fibrosis [65].

28.4.2.2 Effects of mesenchymal stromal cell
microvesicles

Microvesicles are fragments of plasma membrane ranging from
100 to 1000 nm secreted by many cell types. They play an
important role in intercellular communication and are capable
of modifying the activity of target cells through surface receptor
interactions and the transfer of proteins, mRNA, andmicroRNA
(miRNA). Microvesicles have been implicated in tumor–stroma
interactions [66]. Microvesicles released by MSCs have been
associated with tumor inhibition in several preclinical stud
ies [67] and have been shown to inhibit cell cycling and induce
apoptosis or necrosis in vitro and to inhibit growth of established
tumors in vivo [66,68,69], providing a further antioncogenic
effect. Exosomes, a smaller type of intracellular vesicle derived
from MSCs, suppress angiogenesis by downregulating VEGF
expression in breast cancer cells [70], and MSCs pulsed with
tumor-derivedmicrovesicles exert an enhanced antitumor activ
ity against hepatocellular cancer [71]. Thus, the secretome of
MSCs appears to play an important role in their tumor suppres
sive function.

28.4.3 The tumor-promoting roles of
mesenchymal stromal cells

The tumor-promoting role ofMSCs has been attributed to direct
mechanisms and paracrine secretion, including modulation of
the immune response.

28.4.3.1 Direct mechanisms
MSCs have been shown to directly differentiate into pericytes or
possibly endothelial cells [72], thus supporting tumor angio
genesis, which in turn can promote tumor growth. MSC and
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tumor cell contact is another important direct mechanism. In
lymphoma models, direct cell–cell contact was the major mech
anism of promoting tumor cell proliferation and survival rather
than secretion of soluble factors by MSCs [73]. It is well recog
nized that adhesion to the bone marrow of the malignant cells of
the B cell neoplasm, multiple myeloma, provides the myeloma
cells with protection against chemotherapy. Bortezomib is a
proteasome inhibitor used in the treatment of multiple myeloma
and mantle cell lymphoma. MSCs can suppress bortezomib
induced multiple myeloma cell growth inhibition in a cell–cell
contact-dependent manner by increasing Bcl2 expression in the
myeloma cells [74]. Cell–cell contact with MSCs was reported to
protect chronic lymphocytic leukemia cells, another B cell neo
plasm, from spontaneous and drug-induced apoptosis [75].
Bone-marrow-derived MSCs have been reported to fuse with
non-small cell lung cancer cells, resulting in highly malignant
subpopulations with stem-cell-like properties [76].

28.4.3.2 Paracrine mechanisms
MSC promotion of tumor growth via paracrine mechanisms is
mainly attributed to supporting angiogenesis, promoting
tumor growth, and metastasis. Secreted factors from patient
tumor-derived MSCs have been shown to promote tumor
growth in a xenograft mouse model associated with upregu
lation of cell growth and proliferation-related processes and
downregulation of cell-death-related pathways in tumor
cells [20]. Several growth factors secreted by MSCs, including
HGF and TGF-β1, induce proinvasive signals in cancer [77,78].
A large number of proteases that have proangiogenic propert
ies secreted by MSCs may inhibit apoptosis in vascular smooth
muscle cells and endothelial cells [79]. The protease named
serpin e1, a member of the serine proteinase inhibitor super
family, is abundantly secreted by MSCs and has been shown to
regulate proliferation, migration, and apoptosis of vascular
smooth muscle cells and endothelial cells [80]. Transplanta
tion of MSCs promoted microvascular growth in a mouse
model [46,81], suggesting that angiogenesis plays an impor
tant role in support of tumor growth by MSCs.
A tumor-promoting effect attributed to remodeling of ECM

via a paracrine secretion of MSCs also occurs. The ECM is a
major component of the cellular microenvironment and is
composed of diverse proteins such as collagens, elastins, fibro
nectin, proteoglycans, and glycoproteins [82]. Glycoproteins,
such as osteonectin (also known as secreted protein acidic
and rich in cysteine, SPARC), are highly expressed in stromal
fibroblast cells that have been reported to promote tumor
progression in several cancers [83–86]. Abundantly produced
soluble fibronectin [83,87] by MSCs also plays an active role in
the invasive process of human colon and liver cancer [88].Matrix
metalloproteinase proteases and hyaluronan, as well as various
others factors secreted by MSCs, are capable of remodeling the
ECM and facilitating tumor progression [20,89–91].
In contrast, human MSC-secreted microvesicles have been

reported to have a striking antitumor effect in cancer [92] and

tumor immune suppression [93], in which they transport
mRNA, miRNA, and proteins between cells.
A functional role in neoplastic development and metastases

has been attributed to the presence of miRNAs, small non-
coding RNA molecules composed of approximately 22 nucleo
tides. They participate in RNA silencing and gene
regulation [94]. In breast cancer, miR-21 and miR-205 were
associated with tumor development, while miR-126 and miR
335 were related to metastases [37,95]. The promotion of
progression of hepatocellular cancer by MSCs was attributed
to miR-155 [89].
The effect of MSCs on tumor cells has also been reported to be

associated with the induction of EMT [96], an effect that is
further enhanced by the inflammatory milieu that characterizes
many cancers. Initiation of metastasis requires invasion, and this
is enabled by EMT: carcinoma cells in the primary tumor lose
cell–cell adhesion mediated by repression of E-cadherin and
break through the basement membrane with increased invasive
properties and enter the bloodstream by intravasation. Later,
when these circulating tumor cells exit the bloodstream to form
micrometastases, they undergo the reverse process –mesothelial
to epithelial transition. Evidence of a role forMSCs in EMT is the
observation of increased expression of cancer-associated fibro
blast and EMT markers in a co-culture model of hepatoma cells
and MSCs [97]. There is also evidence that there are intricate
links between EMT-type cells and drug resistance in tumors [98].
MSC-dependent EMT induction has been associated with
shorter tumor-free survival and poorer overall survival, demon
strating the clinical relevance of this effect [96,99]. MSCs might
also promote tumor progression or invasion via inducing regu
lation of secretion of IL-6 and secretion of SDF-1α in
EMT [53,100].

28.5 The potential immunomodulation by
mesenchymal stromal cells in the
tumor microenvironment

MSCs can influence both the innate and adaptive immune sys
tems, including the function of antigen-presenting cells [79,101],
natural killer cells [102], B cells, and T cells [103,104] (and see
Chapters 33 and 34). Immune suppressive cells accumulate in
some tumors, which can impede immune surveillance and facili
tate tumor growth [105]. The number and function of anti-tumor
immune cells are decreased [54,106].

28.5.1 Mesenchymal stromal cells inhibit
natural killer cells and macrophages

MSCs can modulate the function of NK cells [107] and macro
phages [108]. NK cells are a type of lymphocyte that plays a role
in the rejection of both tumors and virally infected cells. MSCs
can inhibit the proliferation, cytotoxity, and cytokine production
of NK cells through secretion of IDO and prostaglandin E2
(PGE2) [107,109]. In addition to IDO and PGE2, cancer
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associated stromal cells produce other soluble factors, such as
VEGF and platelet-derived growth factor, which enhance tumor
progression by promoting or attracting M2macrophages, which
are characterized by their production of high levels of the
suppressive cytokine IL-10 and low levels of the proinflamma
tory cytokines IFN-γ andTNF-α [110].M2macrophages activate
T helper 2 cell activity and also promote angiogenesis, tissue
remodeling, and repair. Proinflammatory stimulation by IFN-γ,
TNF-α, or LPS increases the expression of COX-2 and IDO in
MSCs and these enzymes promote further M2 macrophage
polarization [108]. Macrophages also play an important role
in the innate immune response to virus infections. Innate
immune responses, including TLRs, are important for viral
clearance [111].

28.5.2 Mesenchymal stromal cells inhibit T cell
proliferation

T cells are themajor player of the adaptive immune response and
are important in controlling malignant disease, mediating both
cytotoxicity of cancer cells and releasing anti-oncogenic cyto
kines [112,113]. MSCs can inhibit T cell function through
multiple pathways [114,115]. MSC suppression of T cell
responses can be mediated by cell contact and soluble factors,
including TGF-β, HGF, PGE2, soluble human leukocyte antigen
(HLA)-G5, IDO, and inducible nitric oxide synthe
tase [112,113,116–118]. Inhibition of T cell function by MSCs
affects T cell proliferation and IFN-γ production and induces the
production of IL-4, resulting in a shift from a proinflammatory T
cells to anti-inflammatory T cells [114,115]. Cell–cell contact T
cell inhibition byMSCs can bemediated by surface expression of
HLA-G [119], a nonclassical major histocompatibility complex
class Imoleculewith tolerogenic functions that contribute to fetal
graft tolerance and human allograft acceptance [120]. Fas ligand
and programmed death-ligand 1 also play significant roles in
immunomodulation mediated by MSCs [121].

28.5.3 Mesenchymal stromal cells promote
the expansion and function of
regulatory T cells

Regulatory T cells (Tregs) are a subset of T cells that suppress
activation of the immune system to maintain homeostasis and
tolerance to self-antigens. An increased number of highly acti
vated Tregs were found to infiltrate the tumor milieu of liver
tumors in which they were mainly localized in the stromal
compartment of the tumors [106]. The frequency of Tregs has
been associated with poor prognosis [122–124]. MSCs can
induce the generation and expansion of Tregs by the secretion
of TGF-β [125], IDO [126] and the release of soluble HLA
G5 [113]. In contrast to their suppression of cytotoxic T cells,
MSCs can induce the generation and expansion of Tregs [127].
Additionally,MSCs have been reported to induce the production
of IL-10 by plasmacytoid dendritic cells (DCs), which in turn
triggered the generation of Tregs [114].

28.5.4 Mesenchymal stromal cells inhibit the
function of dendritic cells

It has been found that MSCs also display immunosuppressive
potential through inhibiting the differentiation of DCs. DCs are
the most efficient cells in presenting antigen to T cells. They play
a key role in the initiation of the primary immune responses and
in tolerance, depending on their activation and maturation
status [128]. MSCs are capable of modulating the differentiation,
activation, and function of DCs [129]. MSCs reduce the produc
tion of several cytokines by DCs, including IL-12 and TNF
α [130]. MSCs isolated from different tissue sources present
distinct immunomodulatory profiles [131], so it will be impor
tant to more closely study MSCs present in tumors.

28.6 Therapeutic application of
mesenchymal stromal cells
in cancer

28.6.1 Potential therapeutic application
Several studies have demonstrated that MSCs have the capacity
to reverse acute and chronic injury in different experimental
settings [132–135]. MSCs have been reported to attenuate
inflammation [136–138] and ameliorate autoimmune dis
eases [10,139–141]. The fact that MSCs can migrate into certain
types of tumors has led to their use as vehicles for tumor-specific
delivery of anticancer drugs or genes.
Genetically modified MSCs have been used to deliver anti

cancer genes and inhibit cancer cell proliferation in vitro and
in vivo [95,142–144]; and see Chapter 62. Several studies have
demonstrated that MSCs have anticancer effects in different
experimental settings [62,96,145–147]. MSCs have been exten
sively investigated in clinical trials as potential therapy in a
number of different diseases [148,149]. Approximately 18 trials
have been registered at ClinicalTrials.gov involving the use of
MSCs in various cancers. These include ovarian cancer
(NCT02068794), prostate cancer (NCT01983709), and hemato
logic malignancy (NCT01854567).

28.6.2 Reasons for caution
Given the context-dependent role of MSCs, it appears possible
that MSCs in the tumor microenvironment could promote
tumor growth [150]. MSCs may facilitate malignant develop
ment in patients at high risk of developing cancer, such as those
with chronic hepatitis B or C patients or recipients of organ
transplants [19,151,152]. In addition, MSCs have the potential
for malignant transformation during ex vivo expansion [153].
Furthermore, although MSCs can be detected by magnetic

resonance imaging or radioactive labeling [154] for up to 25
days [25], the cellular fate and distribution in vivo of transplanted
MSCs remain unclear because techniques for tracking infused
MSCs have low sensitivity [155]. Because of unclear clinical
benefits of MSCs in patients with cancer [156–158] and because
of the role of MSCs in the tumor microenvironment, it would be

http://ClinicalTrials.gov
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wise to be cautious in the use of MSCs in patients withmalignant
diseases.
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