International Conference On Medicinal Plants

The Future of Medicinal Plants: From Plant to Medicine

Surabaya, 21-22 July 2010

Organized by

Pokjanas

Deutscher Akademischer Austauschdienst
German Academic Exchange Service

SPECIAL EDITION
PROCEEDING OF
INTERNATIONAL CONFERENCE ON
MEDICINAL PLANTS

in occasion of

the 38th Meeting of National Working Group on Indonesian Medicinal Plant

21-21 July 2010
Surabaya, Indonesia

Advisory Board :
Henk van Wilgenburg
Mona Tawab
Tohru Mitsunaga
De-An Guo
Adrianta Surjadhana
Kuncoro Foe

Editor :
Elisabeth C. Widjajakusuma

Organizing Committee
FACULTY OF PHARMACY
WIDYA MANDALA CATHOLIC UNIVERSITY

in collaboration with
National Working Group on Indonesian Medicinal Plants
and German Academic Exchange Service
CONTENT

Preface

Design of Animal Experiments for Effectiveness and Safety Studies of Phytomedicines: A Computer Simulation
H. van Wilgenburg

Gas Chromatography-Mass Spectroscopy (GC-MS) based Metabolic Fingerprinting of three Malaysian Ginger (Zingiber officinale Rosc.)
Retno A. Budi Muljono, H. J. Mahdi, Ishak

Antibacterial Activity of Marine Sponges Haliclona fascigera against Ralstonia Solanacearum
Dian Handayani, Nining, Fatma Sri Wahyuni

A Bioactive Compound of Lactarane Sesquiterpene Vellaral from the Stem Bark of Drymis beccariana Gibbs. (Winteraceae)
Bimo B. Santoso, Markus H. Langsa and Rina Moge

Preliminary Study on Phaeomeria sp. Economic Potency
Hanifa Marisa, Rahmiwati, Hidayatullah

Vasoactive Effect of Connarus grandis Leaves Extracts on Different Strains of Rats
Armenia, Helsa Devina, M.Z.A. Sattar

Seed Germination and Medical Properties of Areca catechu L.
Rony Irawanto

The Bioactivity Test of Mangosteen (Garcinia mangostana L. Guttiferae) Pericarp against Staphylococcus aureus and Escherichia coli Bacteria
Pertamawati, Nurali

Phytochemical Study of Ketapang Bark (Terminalia catappa L.)
Ade Zuhrotun, Asep Gana Suganda, As'ari Nawawi
The Effect of Katu Infuse (Sauropus androgynus) Leaves on Spermatogenesis in Testis Seminiferous Tubules of Mice (Mus musculus)
Mas Loegito, Mas Mansyur, E Devi Dwi Rianti

Ex-situ Growth, Yield, and Stigmasterol of Pimpinella alpina in Altitude and Light Intensity
Usman Siswanto, Tri Widayat, R. Mujahid, Rahma, Yuli Widiyastuti, Sujarto, Elok

Bambang Prajogo E.W.

AUTHOR INDEX

PLANT NAMES INDEX (Volume 1 and 2)
THE EFFECT OF KATU INFUSE (SAUROPUS ANDROGYNUS) LEAVES ON SPERMATOGENESIS IN TESTIS SEMINIFEROUS TUBULES OF MICE (MUS MUSCULUS)

Mas Loegito ¹, Mas Mansyur ², E Devi Dwi Rianti ³*

¹Department of Biology molecular, Faculty of Medicine, Wijaya Kusuma University Surabaya.
², ³Department of medical physic, Faculty of Medicine Wijaya Kusuma University Surabaya.
*Corresponding author, e-mail: mbak.devi@gmail.com

Abstract: Katu leaves contain steroid substances. Steroid substances in blood can deinhbids indirectly hypothalamus activity and inhibits secretion of GnRH. Reduction of GnRH in the blood from hypothalamus cause inhibits FSH and LH secretion from pituitary gland, resulution in the disruption of spermatogenesis proces. Material consist of infuse sauropus androgyans leaves and 60 male mice of 8 weeks old. With 20-30 grams body weight, were devided into control. Group and treatment groups. Data were analyzed using Anova test. If the results indicated significant of different of 95%, the analyzed was continued with Duncan test. The result of this experiment are: The heightening of the infuse concentration of anropus androgyans leaves were treated 0,5 cc infuse per oral / per day, caused decreases of the cell association number, the spermatosis number, and the spermatid number in testis seminiferous tubules of mice. So the infuse of samropus androgygnus leaves will be consumed as contraceptive substance for men.

Keywords: the cell association number, the spermatosis number, the spermatid number, the infuse concentration.

INTRODUCTION

Katu (Sauropus androgyinus, Merr) is a herb belonging to the family Euphorbiacae. The leaves of this plant are use as herbal medication for fever, frangosia, ulcer, venereal diseases, influence breast milk production and consumed as vegetable and to colour of food (Heyne K, 1987, Soedarman and Harsono, 1968).


Reduction of GnRH in the blood from hypothalamus causes inhibits FSH and LH secretion from pituitary gland, resulting in the disruption of spermatogenesis proses (Wignjosastro, 1997). Based on these facts, we want to investigation to the effect of infuse katu leaves to spermatogenesis process in tubules seminiferous testis of mice, especially on the cell association number, spermatosis number, and spermatid number. Wether these are correlation between increases of infuse concentration and inhibits spermatogenesis in its testis.

MATERIALS AND METHODS

This research was conducted at the Labolatory of reproduction Biology, Faculty of Sain and Tecnology, Airlanggga University, Surabaya.

Material consist of infuse katu leaves and 60 male mice of 8 weeks old with 20 – 30 grams body weight, were devided into six groups, i.e. control group were given 0.5 cc per oral per day aquadest; P1 were given 0.5 cc per oral per day 5% infuse; P2 were given 0.5 cc per oral per day 10% infuse; P3 were given 0.5 cc per oral per day 15% infuse; P4 were given 0.5 cc per oral per day 20% infuse, P5 were given 0.5 cc per oral per day 25%
infuse. Treatment was carried out for 35 days. The testis were removed to examine the structure of the histological tubules seminiferous of the testis.

Data were obtained by enumerating the number of cell association, spermatosit, and spermatid in testis seminiferous tubules of mice from controle and each treatment groups. Data were analyzed was continued with Duncan Test (Duncan Multiple Range Test).

RESULTS

The experiment dates before of anove test, we make of normal distribution test with " One Sampel Kolmogorof - Smirow Test ". The results symp sig test more than 0.60, so the normal distribution test so we can do anova test. Base on the anove test of the date there are different of cell association number in tubules seminiferous on any threatment groups see table 1 and 2.

Table 1. The result anove test of different cell association number in seminiferous tubules for any threatment and controle

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum Square</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>1238.908</td>
<td>5</td>
<td>247.782</td>
<td>98.615</td>
<td>0.00</td>
</tr>
<tr>
<td>Intercept</td>
<td>1811.702</td>
<td>1</td>
<td>1811.702</td>
<td>721.043</td>
<td>0.00</td>
</tr>
<tr>
<td>Treatment</td>
<td>1238.908</td>
<td>5</td>
<td>247.782</td>
<td>98.615</td>
<td>0.00</td>
</tr>
<tr>
<td>Error</td>
<td>135.681</td>
<td>54</td>
<td>2.513</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3186.290</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected total</td>
<td>1374.589</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. The date of the influence of infuse katu leaves which different of mean cell association number

<table>
<thead>
<tr>
<th>No</th>
<th>Threatment</th>
<th>Mean of cell association number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control</td>
<td>14.72±3.54</td>
</tr>
<tr>
<td>2</td>
<td>P1 5%</td>
<td>7.24±0.80</td>
</tr>
<tr>
<td>3</td>
<td>P2 10%</td>
<td>4.77±0.70</td>
</tr>
<tr>
<td>4</td>
<td>P3 15%</td>
<td>2.46±0.85</td>
</tr>
<tr>
<td>5</td>
<td>P4 20%</td>
<td>1.98±0.77</td>
</tr>
<tr>
<td>6</td>
<td>P5 25%</td>
<td>1.80±0.27</td>
</tr>
</tbody>
</table>

Base on the anove test of the date there are different of spermatocyte number in seminiferous tubules on any threatment groups see table 3 and 4.

Table 3. The result anove test of different spermatocyte number in seminiferous tubules for any threatment and controle

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum Square</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>1302.163</td>
<td>5</td>
<td>260.433</td>
<td>82.067</td>
<td>0.00</td>
</tr>
<tr>
<td>Intercept</td>
<td>12229.393</td>
<td>1</td>
<td>12229.353</td>
<td>3853.710</td>
<td>0.00</td>
</tr>
<tr>
<td>Treatment</td>
<td>1302.163</td>
<td>5</td>
<td>260.433</td>
<td>82.067</td>
<td>0.00</td>
</tr>
<tr>
<td>Error</td>
<td>171.364</td>
<td>54</td>
<td>3.173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13702.920</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected total</td>
<td>1473.527</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. The date of the influence of infuse katu leaves which differenent of mean spermatocyte number.

<table>
<thead>
<tr>
<th>No</th>
<th>Threatment</th>
<th>Mean of cell association number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control</td>
<td>22.72±2.74</td>
</tr>
<tr>
<td>2</td>
<td>P1 5%</td>
<td>17.08±1.63</td>
</tr>
<tr>
<td>3</td>
<td>P2 10%</td>
<td>14.48±1.32</td>
</tr>
<tr>
<td>4</td>
<td>P3 15%</td>
<td>12.44±1.58</td>
</tr>
<tr>
<td>5</td>
<td>P4 20%</td>
<td>10.32±1.03</td>
</tr>
<tr>
<td>6</td>
<td>P5 25%</td>
<td>8.62±1.29</td>
</tr>
</tbody>
</table>
Based on the anova test of the date there are different of spermatid number in tubules seminiferous on any threatment groups see table 5 and 6.

Table 5. The result anova test of different spermatid number in seminiferous tubules for any threatment and control

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum Square</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>1382.203</td>
<td>5</td>
<td>76.441</td>
<td>5.714</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>10864.913</td>
<td>1</td>
<td>10864.913</td>
<td>812.202</td>
<td>0.000</td>
</tr>
<tr>
<td>Treatment</td>
<td>382.203</td>
<td>5</td>
<td>76.441</td>
<td>5.714</td>
<td>0.000</td>
</tr>
<tr>
<td>Error</td>
<td>722.364</td>
<td>54</td>
<td>13.377</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>11969.480</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Corrected total</td>
<td>11104.567</td>
<td>59</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 6. The date of the influence of infuse katu leaves which different of mean spermatid number.

<table>
<thead>
<tr>
<th>No</th>
<th>Threatment</th>
<th>Mean of cell association number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control</td>
<td>15.94±4.71</td>
</tr>
<tr>
<td>2</td>
<td>P1 5%</td>
<td>15.66±2.76</td>
</tr>
<tr>
<td>3</td>
<td>P2 10%</td>
<td>15.22±4.62</td>
</tr>
<tr>
<td>4</td>
<td>P3 15%</td>
<td>13.89±2.23</td>
</tr>
<tr>
<td>5</td>
<td>P4 20%</td>
<td>10.40±3.88</td>
</tr>
<tr>
<td>6</td>
<td>P5 25%</td>
<td>9.64±2.89</td>
</tr>
</tbody>
</table>

DISCUSSION

The result of the experiment are followings:
1. Based on anova test, the number of cell association in testis seminiferous tubules between groups of control, P1, P2, P3, P4, and P5 was very significantly different on level 95% (p = 0.00 < 0.05). But the number of cell association of P3, P4, and P5 groups were not significantly different on 95% (p = 0.00 < 0.05) from one another by Duncan's test, but all of the groups significantly different toward control group, P1, and P2 groups. Beside of those results, it was found that the number of cell association on control group, P1, and P2 groups were significantly different on level of significant 95% (p = 0.00 < 0.05).
2. There were high correlation between the number of cell association toward the increase of infuse katu concentration were treated to mice by index correlation 0.843 > 0.600.
3. There were significant difference the spermatosit number in testis seminiferous tubules of mice between all groups on level of significant 95% (p = 0.00 < 0.05).
4. There were correlation between the spermatosit number in testis seminiferous tubules of mice toward the increase of infuse concentration were treated to mice in any groups by index correlation (r) 0.914 > 0.600.
5. The different of the spermatid number in testis seminiferous tubules of mice between control group, P1, P2, and P3 were not significant; in such a manner for P1 to P2, P2 to P3, not significant on level of significant 95% (p = 0.00 < 0.05), but spermatid number in control group, P1, P2, and P3 were different toward the spermatid number in P4 and P5 groups on level of significant 95% (p = 0.00 < 0.05).
6. There were light correlation between the spermatid number in tubules seminiferous toward the increases of infuse concentration were treated to mice in any groups by index correlation (r) 0.553 < 0.60.
7. There were high correlation between cell association number toward spermatosit number in testis seminiferous tubules of mice by index correlation 0.839 > 0.60.
8. There were light correlation between the cell association number toward the spermatid number in testis seminiferous tubules of mice by index correlation (r) 0.408 < 0.60.
9. There were light correlation between spermatid number toward the spermatid number in testis seminiferous tubules of mice by index correlation (r) 0.490 < 0.60.
CONCLUSION
The conclusion of this experiment are followings:
1. The infuse of *Sauropus androgynus* leaves affected to decreases of the cell association number in testis seminiferous tubules of mice which treated 0.5 cc infuse per oral per day.
2. The heightening of the infuse concentration of *Sauropus androgynus* leaves were treated 0.5 cc infuse per oral per day, caused decreases of cell association number in testis seminiferous tubules of mice.
3. The infuse of *Sauropus androgynus* leaves affected to decreases of spermatosit number in testis seminiferous tubules of mice which treated 0.5 cc infuse per oral per day.
4. The heightening of the infuse concentration of *Sauropus androgynus* leaves were treated 0.5 cc infuse per oral per day, caused decreases of the spermatosit number in testis seminiferous tubules of mice.
5. The infuse of sauropus andorygynus leaves affected to decreases of the spermatid number in testis seminiferous tubules of mice.
6. The heightening of the infuse concentration were treated to the male mice, caused to decreases of the spermatid number in testis seminiferous tubules.

SUGGESTION
Based on the results, we suggest that if the infuse of *Sauropus androgynus* leaves will be consumed as contraceptive substance for men, there are studies should be conducted about:
1. Optimum dose of *Sauropus androgynus* leaves for men
2. Infuse dose of *Sauropus androgynus* leaves which has reversible effect to the spermatogenesis proces for men.

REFERENCES
SUPPLEMENTARY MATERIALS

The following figures were the cross section structure of testis seminiferous tubules of mice to control group and treatment P1, P2, and P3.

Figure 1. Control group

Figure 2. P1 group

Figure 3. P2 group

Figure 3. P3 group