SISTEM PEMESANAN MAKANAN & MINUMAN MENGGUNAKAN METODE COLLABORATIVE FILTERING (STUDI KASUS PATDUA COFFEE & EATERY)

Ma'ruf, Reyhan Abel (2025) SISTEM PEMESANAN MAKANAN & MINUMAN MENGGUNAKAN METODE COLLABORATIVE FILTERING (STUDI KASUS PATDUA COFFEE & EATERY). [Tugas Akhir/Skripsi]

[img] Text
Abstrak.pdf

Download (981kB)
[img] Text
Bab 1.pdf
Restricted to Repository staff only

Download (271kB) | Request a copy
[img] Text
Bab 2.pdf
Restricted to Repository staff only

Download (358kB) | Request a copy
[img] Text
Bab 3.pdf
Restricted to Repository staff only

Download (405kB) | Request a copy
[img] Text
Bab 4.pdf
Restricted to Repository staff only

Download (1MB) | Request a copy
[img] Text
Bab 5.pdf
Restricted to Repository staff only

Download (253kB) | Request a copy
[img] Text
Daftar Pustaka.pdf
Restricted to Repository staff only

Download (262kB) | Request a copy
[img] Text
Lampiran.pdf
Restricted to Repository staff only

Download (249kB) | Request a copy
[img] Text
LapCekPlagiasi1_Abel.pdf
Restricted to Repository staff only

Download (123kB) | Request a copy
[img] Text
LapCekPlagiasi2_Abel.pdf
Restricted to Repository staff only

Download (7MB) | Request a copy
[img] Text
MJurnalMelekITAbel.pdf
Restricted to Repository staff only

Download (600kB) | Request a copy
Official URL: https://uwks.ac.id

Abstract

Patdua Coffee & Eatery merupakan café yang menyediakan berbagai macam pilihan menu, mulai dari makanan hingga minuman, serta tempat yang nyaman bagi pelanggan. Namun, belum adanya sistem rekomendasi menu menimbulkan masalah antrian yang panjang karena pelanggan memerlukan waktu lama untuk memilih. Tujuan penelitian ini adalah untuk mengatasi masalah tersebut dengan membangun sebuah website pemesanan yang dilengkapi fitur rekomendasi menggunakan metode Item-Based Collaborative Filtering. Hasil penelitian menunjukkan bahwa sistem berhasil diimplementasikan dan diterima dengan sangat positif oleh pengguna. Berdasarkan pengujian Uji Usabilitas (Usability Testing) kepada 32 responden menggunakan Skala Likert, sistem memperoleh skor rata-rata di atas 3.30 (dari skala 4) untuk semua aspek, yang diinterpretasikan sebagai "Sangat Tinggi". Secara khusus, fungsionalitas utama yaitu kemampuan website dalam menyediakan rekomendasi menu mendapatkan skor 3.47, dan aspek kemudahan penggunaan mendapatkan skor 3.59. Pengujian Blackbox juga mengonfirmasi bahwa seluruh fitur dapat beroperasi dengan baik tanpa ditemukan kesalahan. Kata Kunci : Collaborative Filtering, Sistem Pemesanan, Café ================================================================ Patdua Coffee & Eatery is a café that offers a wide variety of menu options, from food to beverages, as well as a comfortable space for customers. However, the absence of a menu recommendation system has led to long queues as customers take a considerable amount of time to make their selections. This research aims to address this issue by developing a website-based ordering system equipped with a recommendation feature using the Item-Based Collaborative Filtering method. The results of the study indicate that the system was successfully implemented and received a very positive response from users. Based on Usability Testing conducted with 32 respondents using a Likert Scale, the system achieved an average score above 3.30 (out of 4) across all aspects, which is interpreted as "Very High." Specifically, the core functionality of the website in providing menu recommendations received a score of 3.47, and the ease of use aspect scored 3.59. Blackbox testing also confirmed that all features operate correctly without any errors found. Keywords: Collaborative Filtering, Ordering System, Café

Item Type: Tugas Akhir/Skripsi
Uncontrolled Keywords: Website, Collaborative Filtering, Sistem Pemesanan, Café
Subjects: T Technology > T Technology (General)
Divisions: Faculty of Engineering > Computer Science or Informatics Study Program
Depositing User: Abel Reyhan Syah Putra
Date Deposited: 16 Sep 2025 03:22
Last Modified: 16 Sep 2025 03:22
URI: http://erepository.uwks.ac.id/id/eprint/20921

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year