TUGAS AKHIR SISTEM PREDIKSI KEBUTUHAN BBM DAN CLUSTERING PELANGGAN MENGGUNAKAN METODE K-MEANS

ILHAM KRISNADI NPM:18120052

DOSEN PEMBIMBING
TJATURSARI WIDIARTIN, S.Kom., M.Kom.

PROGRAM STUDI INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS WIJAYA KUSUMA SURABAYA 2024

LEMBAR PENGESAHAN TUGAS AKHIR

Judul : Sistem Clustering Pelanggan menggunakan

metode K-MEANS guna membantu prediksi

kebutuhan BBM di SPBU 5460112

Oleh:

Ilham Krisnadi

NPM

18120052

Telah diuji pada

Hari

Rabu

Tanggal:

17 Januari 2024

Tempat:

Ruang Baca

Menyetujui:

Dosen Penguji 1

Dosen Pembimbing:

Dr. Anang Kukuh A, ST.,MT

NIK: 197802152015041001

Fjatursari Widiartin, S.Kom., M. Kom

NIK 11540A-ET

Dosen Penguji 2

Emmy Wahyuningtyas, S.Kom., M.MT.

NIK: 09418-ET

PERNYATAAN BEBAS PLAGIASI

Saya yang bertanda tangan dibawah ini:

Nama

: Ilham krisnadi

NPM

: 18120052

Program Studi

: TEKNIK

Fakultas/Sekolah

: INFORMATIKA

Menyatakan bahwa dalam dokumen ilmiah Tugas Akhir ini tidak terdapat bagian dari karya ilmiah lain yang telah diajukan untuk memperoleh gelar akademik di suatu lembaga Pendidikan Tinggi, dan juga tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang/lembaga lain, kecuali yang secara tertulis disitasi dalam dokumen ini dan disebutkan secara lengkap dalam daftar pustaka.

Dengan demikian saya menyatakan bahwa dokumen ilmiah ini bebas dari unsur-unsur plagiasi dan apabila dokumen ilmiah Tugas Akhir ini di kemudian hari terbukti merupakan plagiasi dari hasil karya penulis lain dan/atau dengan sengaja mengajukan karya atau pendapat yang merupakan hasil karya penulis lain, maka penulis bersedia menerima sanksi akademik dan/atau sanksi hukum yang berlaku.

Surabaya, 12 september 2024

A5FCCALX2422211

18120052 .

SURAT PERSETUJUAN PUBLIKASI

Yang bertanda tangan dibawah ini:

Nama : Ilham krisnadi

Tempat, Tanggal Lahir : Semarang, 19 Mei 1999

NPM : 18120052

Program Studi : TEKNIK INFROMATIKA

Alamat : JL TAMBAK OSOWILANGUN

No. Hp/WA : 089681020814

Bersama ini saya menyatakan bahwa dokumen ini SETUJU untuk di publikasikan

Demikian surat pernyataan ini saya buat.

Surabaya,12 September 2024

KATA PENGANTAR

svukur kehadirat Allah vang maha penyayang pengasih dan maha karena telah melimpahkan rahmat dan karunianya. sehingga penulis dapat menyelesaikan penulisan proposal tugas "SISTEM iudul dengan CLUSTERING PELANGGAN MENGGUNAKAN METODE K-**MEMBANTII** MEANS GUNA **PREDIKSI** KEBUTUHAN BBM DI SPBU 5460112" dengan baik guna memenuhi salah satu syarat kelulusan Program Studi Teknik Informatika Fakultas Teknik Universitas Wijaya Kusuma Surabaya.

Penulis menyadari bahwa penulisan proposal tugas akhir ini tidak dapat diselesaikan dengan baik tanpa dukungan dan bantuan dari berbagai pihak. Oleh karena itu penulis mengucapkan limpah terima kasih kepada:

- Bapak Johan Paing Heru Waskito, ST., MT selaku dekan Fakultas Teknik Universitas Wijaya Kusuma Surabaya.
- 2. Bapak Nonot Wisnu Karyanto, ST., M.Kom selaku Ketua Program Studi Teknik Informatika Universitas Wijaya Kusuma Surabaya
- 3. Ibu Tjatursari Widiartin, S.Kom., M.Kom selaku dosen pembimbing yang selalu memberikan waktunya untuk membimbing dan

memberi arahan kepada saya sampai penyusunan proposal tugas akhir ini selesai.

- 4. Dosen-dosen yang telah memberikan ilmu kepada saya dari awal perkuliahan sampai sekarang
- 5. Untuk orang tua, keluarga dan teman-teman yang selalu mensupport saya, yang selalu memberikan doa, dukungan, dan motivasi kepada saya dalam menyelesaikan laporan ini.

Penulis menyadari dalam penulisan Proposal Tugas Akhir ini masih jauh dari kata sempurna. Oleh karena itu, penulis akan menerima kritik dan saran yang diberikan untuk memperbaiki tulisan ini.

Surabaya, 25 Januari 2024

Ilham Krisnadi

DAFTAR ISI

LEMBAR PENGESAHAN TUGAS AKHIR	iii
ABSTRAK	iv
KATA PENGANTAR	vi
DAFTAR ISI	viii
DAFTAR GAMBAR	xi
DAFTAR TABEL	xiv
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Batasan Masalah	3
1.4 Tujuan Penelitian	4
1.5 Manfaat Penelitian	4
BAB 2 TINJAUAN PUSTAKA	5
2.1 State Of Art	5
2.2 Machine Learning	8
2.3 Data Mining	9
2.4 Database	10
2.5 Metode Clustering	11
2.5.1 <i>K-Means</i>	12
2.6 Data Flow Diagram	16
2.7 SPBU	17
2.7.1 Sarana Dan Prasarana	19
2.7.2 Jenis Jenis BBM	22
2.7.3 Struktur Pegawai SPBU	24
2.8 Pelanggan	26
2.9 Flowchart	26
BAR 3 METODE PENELITIAN	29

3.1 Alur Penelitian	29
3.2 User Requirement	29
3.2.1 Kebutuhan Fungsional	30
3.2.2 Kebutuhan Non Fungsional	30
3.3 Analisa Sistem	31
3.3.1 Data Flow Diagram	31
3.4 Desain Sistem	35
3.4.1 Desain Basis Data	35
3.4.2 Desain Logaritma	39
3.4.2 Desain <i>Interface</i>	65
3.5 Membangun Sistem	70
3.6 Pengujian Sistem	70
3.6.1 Black-Box Testing	70
3.6.2 Acceptance Test	71
BAB 4 HASIL DAN PEMBAHASAN	73
4.1 Uji Coba Program	73
4.1.1 Cara Memperoleh Sumber Data	73
4.1.2 Menginputkan Sumber Data Yang	<u>y</u>
Diperoleh Ke Program	76
4.1.3 Menampilkan Sistem Informasi Prediks	i
Kebutuhan BBM	78
4.1.4 Pengujian Akurasi	82
4.1.5 Implementasi Interface K-means Pada	a
Aplikasi	88
4.1.6 Perbandingan Hasil	91
BAB 5 PENUTUP	95
5.1 Kesimpulan	95
5.2 Saran	96

DAFTAR TABEL

Tabel 2.1 State Of Art	5
Tabel 2.2 Simbol DFD	16
Tabel 2.3 Simbol Flowchart	27
Tabel 4.1 Sampel Data Percobaan Perhitungan Manual	83
Tabel 4.2 Hasil Penghitungan Euclidean Distance	85
Tabel 4.3 Nilai Minimum	85
Tabel 4.4 Hasil Perhitungan Jarak Pusat Cluster	87
Tabel 4.5 Hasil Iterasi Akhir	87

DAFTAR GAMBAR

Gambar 2.1 SPBU 5460112 Surabaya	18
Gambar 2.2 Struktur Pegawai SPBU	24
Gambar 3.1 Alur Penelitian	29
Gambar 3.2 DFD Level Context	32
Gambar 3.3 DFD Level 0	33
Gambar 3.4 DFD Level 1 Proses Menghitung jumlah	
Penjualan BBM	34
Gambar 3.5 DFD Level 1 Proses Clustering Pelanggan	35
Gambar 3.6 Conceptual Data Model (CDM)	36
Gambar 3.7 Physical Data Model (PDM)	38
Gambar 3.8 Flowchart Login	39
Gambar 3.9 Coding Login	40
Gambar 3.10 Flowchart Import Data	42
Gambar 3.11 Hasil Download Di Website Pertamina	43
Gambar 3.12 Coding Input File Excel	44
Gambar 3.13 Coding Awal Untuk Membaca Excel	47
Gambar 3.14 Coding Mencari Kolom Di Excel	48
Gambar 3.15 Mencari Kolom Akhir	50
Gambar 3.16 Coding Data Apa Saja Yang Dapat	
Diimport	51
Gambar 3.17 Coding Untuk Menyimpan Di Database	53
Gambar 3.18 Flowchart Melakukan Clustering	
Pelanggan Agar Dapat Melakukan Prediksi	
Kebutuhan BBM	55
Gambar 3.19 Coding Untuk Mencari Jumlah Pelanggan	56
Gambar 3.20 Coding Menentukan Centroid Secara	
Random	57

Gambar 3.21 Coding Menentukan Jarak Terdekat	59
Gambar 3.22 Coding Menampilkan Hasil Cluster	61
Gambar 3.23 Coding menentukan prediksi BBM	64
Gambar 3.24 Halaman Login	66
Gambar 3.25 Halaman Utama	67
Gambar 3.26 Halaman Penjualan Pertalite	68
Gambar 3.27 Halaman Prediksi Kebutuhan Penjualan	
Pertalite Dan Clustering	69
Gambar 4.1 Halaman Login	73
Gambar 4.2 Halaman Main Menu Dashboard SPBU	74
Gambar 4.3 Halaman Laporan Detail Volume	75
Gambar 4.4 Laporan Data Pelanggan dan Penjualan	76
Gambar 4.5 Laporan Data Penjualan Pertalite	77
Gambar 4.6 Laporan Data Pelanggan Dan Penjualan	77
Gambar 4.7 Laporan Data Pelanggan	78
Gambar 4.8 Halaman Utama Login	79
Gambar 4.9 Halaman Prediksi Kebutuhan BBM	79
Gambar 4.10 Halaman Data Penjualan Pertalite3	80
Gambar 4.11 Halaman Prediksi Kebutuhan Penjualan	
Pertalite Dan Clustering Bagian 1	81
Gambar 4.12 Halaman Prediksi Kebutuhan Penjualan	
Pertalite Dan Clustering Bagian 2	81
Gambar 4.13 Halaman Prediksi Kebutuhan Penjualan	
Pertalite Dan Clustering Bagian 3	82
Gambar 4.14 Halaman Prediksi Pemesanan Kebutuhan	
Pertalite	82
Gambar 4.15 Halaman Prediksi Kebutuhan Penjualan	
Pertalite Dan Clustering	88
Gambar 4.16 Halaman Klasterisasi K-Means	89
Gambar 4.17 Halaman Iterasi Ke 1	90

Gambar 4.18 Halaman Iterasi Ke 2	90
Gambar 4.19 Grafik Clustering Dari Iterasi K-Means	91
Gambar 4.20 Hasil Iterasi Manual 1	92
Gambar 4.21 Hasil Iterasi Otomatis 1	92
Gambar 4.22 Hasil Iterasi Manual 2	93
Gambar 4.23 Hasil Iterasi Kedua Jumlah Minimum Dan	
Clustering	93

SISTEM CLUSTERING PELANGGAN MENGGUNAKAN METODE K-MEANS GUNA MEMBANTU PREDIKSI KERUTUHAN RRM DI SPRU 5460112

Ilham Krisnadi

Program Studi Teknik Informatika Fakultas Teknik Universitas Wijaya Kusuma Surabaya

Eyeshield 37@gmail.com

ARSTRAK

SPBU 54.601.12 merupakan salah satu penyedia jasa penjualan BBM di kota Surabaya. Seiring berjalanya waktu jumlah pelanggan mulai mengalami kenaikan sehingga penjualan mulai meningkat. Pihak SPBU sering mengalami kesalahan perhitungan dalam menentukan jumlah pembelian BBM dikarenakan meningkatnya jumlah penjualan BBM mempengaruhi yang dapat perencanaan pembelian sehingga perhitungan tidak akurat sehingga mengakibatkan stok BBM kehabisan dan akhir-akhir ini beberapa jenis BBM mulai diminati oleh pelanggan, akan tetapi pihak SPBU tidak dapat mengetahui apa saja jenis BBM yang diminati pelanggan.

Maka dari itu diperlukan suatu cara agar pihak SPBU dapat mengetahui jumlah BBM yang dibeli supaya tidak kehabisan stok dan pihak SPBU bisa mengetahui jenis BBM mana saja yang diminati oleh pelanggan.salah satu caranya adalah dengan metode *K-Means*, dengan metode tersebut bisa membantu untuk menghitung jumlah BBM yang ingin dibeli dan mengelompokan pelanggan berdasarkan BBM yang diminati. Hasil dari metode *K-Means* ternyata dapat meningkatkan keberhasilan dalam perhitungan pembelian BBM dan lebih akurat, maka dari itu metode *K-Means* dapat mendukung sistem dengan baik.

Kata kunci : BBM , *K-Means*, Perencanaan Pembelian