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Abstract. Soil Tillage serious game designed as a training media has been researched based on the plowing forces using
polynomial functions. However, the learning process is rare; hence the players in Serious Games (SG) are less engaged and
tend to be more static in their games. The effects of vertical cutting angle, plowshare depth, and motor speed affect the soil
plowing force in soil tillage. Therefore it is expected that a plow force model with a learning function will generate more
actual conditions, engage the player and eventually affect the player’s behavior. The serious game design uses a Hierarchical
Finite State Machine (HFSM) in this study. HFSM state is motor speed, vertical cutting angle, and plowing depth. The
learning function is based on Neural Network (NN), with a multilayer feed-forward neural network (FFNN) is chosen to
estimate plowing forces. The Levenberg-Marquardt algorithm is used by NN to approach second-order training speed without
computing the Hessian matrix and is the fastest backpropagation algorithm. The result of the research is a plowing force
model values closer to the actual by giving players feedback as they learn. In the transition, HFSM has a feedback value to
the initial state, which is helpful as part of measuring one game cycle that is run, thus providing a learning experience in a
serious game.
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1. Introduction

Games such as video games can affect emotions
and show personality traits. Based on statistical data
from physiological signals, produce representative
arousal values (direct correlation); from the PANAS
questionnaire, the system generates a valence value
(reverse correlation) [1]. An emotional impact also
has a short-term effect on play, a useful clinical tool
for preventing and treating some cognitive disorders
[2]. On the other side, with this influence on players,
video games are directed to influence player behavior,
which can be used as a learning medium. A game with
a specific purpose other than the fun side is called a
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serious game. Integrating with other devices such as
sensors is also required to create a real learning atmo-
sphere. Physical rehabilitation uses serious video
games with motion systems that incorporate inertial
units, which offer precision and accessibility at low
cost, and health care coverage, and which, in addition,
integrate elements that encourage patient motivation
and participation [3]. As a serious game training
medium that can be used as a training medium such as
for dental student training called Virtual Dental Clinic
(VDC) [4], the military field [5], and other fields.

Using a data-based approach, designing a serious
game means focusing on game objectives by pro-
ducing real-life situations. However, a static data
approach process may reduce the learning quality
and provide less experience to the players [6]. Deep
learning using Neural Network has been success-
fully applied to the serious game, especially in the
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automatic adaptation process of (Non-Player Charac-
ter) NPC behavior, interactive player, such as ‘brain
training’ to maintain mental acuity, Tactical Combat
Casualty Care (TCCC) [7–9].

The application of artificial intelligence concepts,
intense learning neural networks to support decision-
making processes in agriculture is widely carried out,
such as assisting decision-making processes during
grain weevil storage, crop protection, precision agri-
culture, detection and classification of plant diseases,
and crop pests precisely [10]. Soil spatial variability
mapping allows limiting the number of soil samples
investigated to describe agricultural areas by show-
ing functional electrical parameters for delimiting
management zones associated with soil compaction
[11]. In its development, machine learning can be
applied to the needs of monitoring soil conditions,
such as assessing the prediction of surface rough-
ness from satellite images. This study shows that the
PCA-MM-SVR model outperforms all SVR (Support
Vector Regression) variants [12]. In previous studies,
a realistic data approach was based on plowing force
and optimized using Pareto for an immersive serious
game for soil tillage [6].

The plowing force is the soil’s reaction forces
caused by the horizontal force generated by the tillage
tools in the opposite direction. One of the tillage goals
is to make the soil loose with changes in the physi-
cal properties of the soil. The physical properties of
the soil can be improved when using a high-speed
plow on soils with moderate water content [13]. The
plowing forces of soil tillage is influenced by several
factors including the type of soil, the type of tools
for tillage, and the depth of plowing. Subsoil tillage
activities have a deeper processing than other culti-
vation activities, hence the tensile resistance is also
high. When plowing on the ground, the tools’ plowing
force is the same as the force exerted on the ground
in the opposite direction of the instrument’s forward
motion. In short, plowing forces may be described as a
horizontal force component in the opposite direction
of the towing tool’s line [14].

The impact of changes in plow depth on the plow-
ing force, which is also influenced by changes in
cutting angle, was modeled using a third-order poly-
nomial function with an error range of 8,54 percent to
25,63 percent [15]. Other research on similar model-
ing has resulted in the 4th order polynomial functions
and design for the scenario of a serious game [16].
With this modeling and based on the game flow design
of a serious game, the value of the plowing forces
resembles the real condition.

Presumption for the plowing force necessary for
the specific condition in soil tillage can be done.
Unfortunately, there is no learning process in comput-
ing, so it is more static and cannot be used to give the
player more experience in the serious game concept.

This study aims to create a serious game design
for soil tillage using an artificial neural network-
based plowing force model to reinforce learning. The
domain of serious game added to the player’s expe-
rience using a moldboard based on vertical cutting
angle, plowshare depth, and motor speed.

2. Material and methods

2.1. Moldboard plowing forces

As a result of the moldboard plow, there are
changes in the soil’s structure, both in size and shape,
making it suitable for planting certain types of plants.
This change occurs because of the forces during soil
tillage processing, and this force can be between the
plow tool with the ground and between the soil struc-
ture [17]. Plowing force, also called the tillage draft
force is a tool that is operated based on the tillage
conditions. These conditions are important parame-
ters for the design and implementation of tillage tools
that affect soil yields [18].

Soil conditions include soil type and condition,
moisture content, cutting angle, motor speed and
depth of plowing [15, 16, 19, 20]. The specific topic
of research for plow forces is the power per area of
earthworks for moldboard plows, chisel blades, and
discs harrow in various soil conditions, resulting in
highest plowing forces for chisel plows and lowest
for moldboard plow and disk harrow [21].

The plowing forces specific drafts for the tillage
using moldboard plows are illustrated in Fig. 1. New-
ton’s third law can be explained as follows: all forces
have the same value in the opposite direction so the
pull of the driving force that is the motor speed and
the gravitational force affects the plowshare depth,
resulting in a force in the opposite direction called
plowing force or specific draft [22].

2.2. Hierarchical finite state machine (HFSM) in
game design

Hierarchical Finite State Machine (HFSM) is used
to solve problems that cannot be solved by Finite State
Machine (FSM) or complex process problems. Using
FSM, there may be difficulties for maintenance, such
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Fig. 1. Illustration for plowing forces.

Fig. 2. The example implements HFSM in-game.

as when adding or removing states. It is necessary
to change the conditions of all other states that have
a transition to the new or old; scalability with FSM
many states lose the advantages of graphic legibility
into a knotty boxy and arrows where FSM models
cannot be reused. Based on HFSM chart is State
Charts to solve complex systems problems [23].

Using HFSM already uses patterns from the con-
cept of inheritance from programming, making it
easier when applying HFSM to processes on a com-
puter. The concept of inheritance can be analogous to
classes and subclasses in the program, in HFSM gen-
erating superstates and states with general transitions
and transitions [24].

In-Game designs with complex processes can
implement HFSM, for example, simple war games.
Non-Player Characters (NPCs) are prepared to
defend against enemy attacks, position standby the
NPCs crouch and stand up. HFSM has a standby
superstate with a crouch and stand-up state, and the
enemies have a walking state, as shown in Fig. 2.

The form of HFSM in Fig. 2, superstate standby
has state C for crouch and state S for stand-up, with
transitions c and s NPCs can change positions from
crouch and stand-up, then enemies with state provide

Fig. 3. The types of moldboard plow are based on vertical cutting
angles.

transition e for enemy distance and NPCs. If e is near
an NPC with a standby superstate, have a variable w
to transition the attack to the enemy.

2.3. Modeling moldboard plowing forces using a
polynomial function

Prior research has been carried out using a soil
bin by creating soil conditions in a laboratory box
and providing three types of vertical cutting angles
of 600, 650, and 700 [6, 16, 19], as shown in Fig. 3.

The depths of plowshare are at 3.5 cm and 7 cm,
while the speed at gear 1 is 6.8 cm/s, gear 2 is
10.2 cm/s, and gear 3 is 19.92 cm/s. A mathemat-
ical model using the polynomial function of order
four is generated with an error of 4,44 × 10−05 [16].
Equation (1) is an example of a model.

F = {r̃, t̃, ẽ} (1)

Plowing forces is F with variable r is the speed
of gear in motor moldboard, t is the vertical cutting
angle, and e is the deep plowing depth because the
dependent variable’s predicted values are r, t, e.
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Where ct,i is constant value, i =
{0, 1, . . . , n} , n = 3 and j = {1, 2, . . . , m} , m =
125.
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Fig. 4. Immersive serious game design using HFSM (Hierarchical finite state machines) for soil tillage [16].

2.4. Serious game design for soil tillage

The immersive serious game (ISG) design is based
on the polynomial function model using Hierarchical
finite state machines (HSM), where the polynomial
function F = p (f ) becomes a state [16], in Fig. 4.

The serious game starts with the player starting
the engine motor, where there is a choice of gears
that determine the initial speed, namely the 1st tran-
sition at low speed, 2nd gear at medium speed, and
3rd gear at high speed. The motor starts moving if
the value is one and stops if the value is 0. p (f ) is a
superstate which is a polynomial function affected by
the substate transition of r for motor speed, the sub-
state transition of t for plow vertical cutting angle, and
substate transition of e for depth of plowing. These
parameters are interconnected and produce a transi-
tion value F which is a state of the plowing force. The
feedback transition from the plowing force state is an
effort to create the player’s real situation by finding
the least error value.

2.5. Neural network architecture in SG soil
tillage

Historically, neural networks (NN) were supported
by human brain functions and are part of machine
learning algorithm engineering. In their development,
there is the fact that neural networks are deep neural
processes that are applied in a technique called deep
learning [25].

Fig. 5. Neural Network architecture for soil tillage.

Speed of gear in motor moldboard denoted by r,
vertical cutting angle denoted by t, and depth of plow-
ing denoted by e, are three variables that define an
input for NN, as shown in Fig. 5.

The NN model shows one hidden layer
with ten neurons, for weight hidden layer are
wa1, wa2, . . . .wan, where n = 1 . . . 30, for hidden
bias layer are ba1, ba2, . . . , ban where n = 1...10,
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Table 1
Architecture specification NN for soil tillage

Characteristic Specification

Architecture 1 hidden layer
Algorithm method Levenberg-Marquardt (fastest backpropagation)
Neuron input r, t, e (speed of gear in motor moldboard, vertical

cutting angle, and depth of plowing)
Hidden neuron 10
Neuron output 1 (plowing forces)
Activation function for the hidden layer Sigmoid biner
Minimmum performance gradient 1e-6
Maximum Epoch 1000
Weight values Random values (0–1)
Bias values 0.5

and weight for output are wb1, wb2, . . . , wbnwhere
n = 1 . . . 10, the bias for output is bb1, bb2, . . . , bbn

Where n = 1 . . . 10.
The Levenberg-Marquardt algorithm is used by

NN to approach second-order training speed with-
out computing the Hessian matrix and is the fastest
backpropagation algorithm.

The Levenberg-Marquardt algorithm is specifi-
cally designed to minimize sum-of-squares error
functions [26].

The details of NN architecture for soil tillage are
shown in Table 1.

2.6. Neural network architecture in SG soil
tillage

In this research, a multilayer feed-forward neu-
ral network (FFNN) is chosen to estimate plowing
forces. In FFNN, there is one input layer, one or more
hidden layers, and one output layer. A neural network
with one hidden layer can already handle cases with
complex functions. In this soil tillage model, the work
of FFNN with one hidden layer is shown in Fig. 6.
One hidden layer is used because the soil bin’s exper-
imental data changes the plowing forces as the depth
increases tens to be linear. In addition, using a hid-
den layer can produce a relatively small average error
value of 0.037767 and MSE = 0,0019815

While Fig. 6 shows the schematic structure of a
neuron with more than one input, namely r, t, e (speed
of gear in motor moldboard, vertical cutting angle,
and depth of plowing).

The bias b with the value of 0.5 in a neuron, which
is summed up with the weighted w form the network
input m, which can be expressed by :

m = Wp + b (5)

p are the input value of the gear speed in the motor
moldboard, vertical cutting angle, and depth of plow-
ing.

The network input m passes through an active func-
tion f which generates the neuron output plowing
forces F .

F = f (m) (6)

The following Equation [16] can be used to calcu-
late the log-sigmoid activation function:

f (x) = 1

1 + e−x
(7)

From Fig. 6, a multi-input NN for soil tillage can
be implemented with the following equation :

F2 = f 2

(
Q∑

k=1

w2
1,kf

1

(
N∑

l=1

w1
k,lpk + b1

k

)
+ b2

)

(8)
f 2 is the output of the overall networks
N is the number of inputs
Q is the number of neurons in the hidden layer
pk Indicates the k input.
Part of the activation functions of the hidden layer

and output layer are f 1 and f 2. b1
k represents the bias

of the k neuron in the hidden layer, and then the bias
of the neuron and the output layer is b2.

The weight connecting the l input represented by
w1

k,l and the k neuron of the hidden layer, and w2
1,k

Are the weight connecting the source of the hidden
layer to the neuron output.

3. Result and discussion

The data is the result of an experiment using a soil
bin tool [6, 16, 19], where the experimental param-
eters are; There are three types of speed from the
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Fig. 6. Structured of NN for soil tillage

driving motor, there are three vertical plowshare cut-
ting angles, and it has two depths. To identify the
effect pattern of motor speed, vertical cut angle, and
plowing depth to the plowing force, a neural network
model with the characteristics and specifications in
Table 1 is used.

The training process uses a neural network through
several stages, namely:

a) Data Normalization from the experiment using
soil bin.

b) Data Training and testing from the experiment
using soil bin.

3.1. Data normalization from the experiment
using soil bin.

Normalizing data is done by transforming the data
into the range 0.1 and 0.9 with Equation (9), and the
normalized data is presented in Table 2.

y′ = 0, 8 (y − b)

(a − b)
+ 0, 1 (9)

Where, y′ Is normalized data, a is a maximum
value, b is the minimum value, andy is original data.

3.2. Training and testing for serious game
design using HFSM

Serious game design using Hierarchical Finite
State Machine (HFSM) to describe scenario player
is shown in Fig. 7.

The engine motor starts indicated by the transition
value of the motor state with initial M as 1, the selec-

Table 2
Normalized data from an experiment using soil bin

Speed of Vertical Cutting Depth of Plowing
motor angle plow forces

0,1085 0,2443 0,1000 0.3615
0,1085 0,2571 0,1000 0.2668
0,1085 0,2699 0,1000 0.1371
0,1085 0,2443 0,1089 0.6579
0,1085 0,2571 0,1089 0.3599
0,1085 0,2699 0,1089 0.3289
0,1170 0,2443 0,1000 0.3937
0,1170 0,2571 0,1000 0.2716
0,1170 0,2699 0,1000 0.1907
0,1170 0,2443 0,1089 0.8934
0,1170 0,2571 0,1089 0.5688
0,1170 0,2699 0,1089 0.3791
0,1419 0,2443 0,1000 0.5350
0,1419 0,2571 0,1000 0.3491
0,1419 0,2699 0,1000 0.2162
0,1419 0,2443 0,1089 0.9000
0,1419 0,2571 0,1089 0.8736
0,1419 0,2699 0,1089 0.6668

tion of gear 1, 2 or 3 shows that the initial speed in
the motor speed state is R at transition r, while the
transition t in the initial T for vertical cutting angle
state and the plowing depth state is E at transition
e. The transition values of r, t, and e as the input of
neurons are calculated using the NN model, which
produces an output of state F at transition f , namely
plowing forces. This process will be continued when
the player changes the input value of the serious game
process. The feedback value of state F is a compari-
son of the MSE value result, which shows the force
required to carry out soil tillage to produce certain
soil conditions.

The feedback from state F has two conditions; the
first value is 0 if MSEi > MSEi+1, which indicates
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Fig. 7. Design serious game using HFSM for soil tillage with a learning process using NN.

that the results of the plowing force are worse (farther
away from the target data); therefore, the player is
allowed to re-select the conditions r, t, and e.

MSEi ≤ MSEi+1 indicates that it is getting closer
to the target, and a repetition process is carried out
for NN; hence it is expected to be closer to the results
with the target data. In this case, the target data is
experimental data using a soil bin.

Data that has been normalized is divided into two
parts, namely training data which is the input, and
the target, which is the output. The training data is
the speed of the motor, vertical cutting angle, and
plow depth while the target is plowing forces. The
architecture of the training data is shown in Fig. 5.

There are three inputs, r, t, and e referring to motor
speed, vertical cutting angle, and plowing depth. The
weighting randomly is assigned at 0-1, with a bias
value used of 0.5 for hidden layer bias and output
bias.

From Fig. 8 for the training using NN, it can be
seen that the resulting pattern in the graph coincides
with the target, where MSE is 0.0019815.

Testing the NN model was done using 30 test data
with random input parameters between the maxi-
mum and minimum values. The random values are
described with Equation (10).

x′ = rand (max − min) + min (10)

Fig. 8. Graph result from implementation NN for soil tillage.

Wherex′ is a random value ranging from maximum
and minimum. The result of NN testing is shown in
Table 4.

Table 3 shows that the neural network results are
close to the experimental data using the soil bin,
meaning that the architecture of NN can be used as
a model for plowing forces in soil tillage. In addi-
tion, residual plots and histogram error plots are also
generated in Figs. 9 and 10. The residual plot shows
that more values are close to zero, namely between
–0.05 to 0.05. From the histogram plot, it can be seen
that the small frequency error between 0.0052 and
0.0482 reaches more than 13 data, so the plot of resid-
uals and the histogram error can be stated that the NN
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Table 3
Plowing forces comparison between soil bin experiment and NN

Plowing forces Plowing forces Error
(soil bin) (NN)

0.3615 0.3710 0.0095
0.2668 0.2200 0.0468
0.1371 0.1244 0.0127
0.6579 0.6527 0.0052
0.3599 0.4492 0.0893
0.3289 0.2903 0.0386
0.3937 0.4459 0.0522
0.2716 0.2858 0.0142
0.1907 0.1853 0.0054
0.8934 0.7892 0.1042
0.5688 0.5831 0.0143
0.3791 0.4247 0.0456
0.5350 0.5010 0.0340
0.3491 0.3406 0.0085
0.2162 0.2482 0.0320
0.9000 0.9834 0.0834
0.8736 0.7954 0.0782
0.6668 0.6611 0.0057

Table 4
Result of NN test in serious game design for soil tillage

No Speed of motor Cutting angle Depth of plow Plowing forces

(transition r) (transition t) (transition e) (transition f )

1 0,1119 0,3037 0,1000 0.3352

2 0,1581 0,3356 0,1032 1.7133

3 0,1413 0,3252 0,1015 1.1279

4 0,1518 0,3142 0,1121 1.0554

5 0,1119 0,3037 0,1126 0.2574

6 0,1119 0,3124 0,1097 0.3848

7 0,1370 0,3167 0,1032 0.8500

8 0,1429 0,3106 0,1031 0.7546

9 0,1148 0,3319 0,1026 1.0124

10 0,1119 0,3218 0,1126 0.4340

11 0,1103 0,3177 0,1121 0.3562

12 0,1442 0,3180 0,1006 0.9100

13 0,1524 0,3252 0,1064 1.2942

14 0,1290 0,3386 0,1086 1.2984

15 0,1240 0,3218 0,1000 0.8556

16 0,1336 0,3274 0,1085 1.0734

17 0,1216 0,3297 0,1099 0.8808

18 0,1255 0,3080 0,1072 0.5733

19 0,1142 0,3307 0,1085 0.7920

20 0,1240 0,3398 0,1126 1.0777

21 0,1440 0,3175 0,1049 0.9621

22 0,1244 0,3349 0,1125 0.9755

23 0,1496 0,3328 0,1109 1.4564

24 0,1392 0,3074 0,1022 0.6343

25 0,1592 0,3218 0,1000 1.1527

26 0,1532 0,3312 0,1050 1.4914

27 0,1424 0,3333 0,1097 1.3613

28 0,1412 0,3320 0,1058 1.3496

29 0,1358 0,3368 0,1073 1.3964

30 0,1592 0,3398 0,1126 1.8071

Fig. 9. Plot Residual from model NN for soil tillage.

Fig. 10. Plot Histogram Error from model NN for soil tillage.

model produces data that is close to the target or actual
situation.

Using random values generated by the plowing
force in Tables 4 and 5, the plowing forces repre-
sent the NN model’s actual data. The graphic output
from testing NN for soil tillage is shown in Fig. 11.

4. Conclusion

According to the present study, the transition r t e
indicates the value of the motor speed, vertical cutting
angle, and plowing depth entered into NN modeling.
The HFSM results in a transition value of f , giving
players feedback to add to the learning experience. At
the value of the motor speed or stateRwith an increas-
ing transition r for the exact vertical of cutting angle
and depth of plow, it shows that the plowing forces
are getting bigger. The value of the vertical cutting
angle or state T with an t transition for the constant
motor speed and depth of plowshare indicates that
the plowing forces are getting smaller. While for the
value of the depth of the plowshare or state E with a e
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Fig. 11. Graph result for NN test in serious game design for soil tillage.

transition at the constant for vertical cutting angle and
motor speed, it shows the plowing force is getting big-
ger. Furthermore, function learning in a serious game
design can provide almost realistic values, accord-
ing to the results of an artificial neural network with
MSE = 0.0019815.
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