Berkala Hayati

by Budhi Setiawan

Submission date: 12-Jan-2022 12:21PM (UTC+0700) Submission ID: 1740456129 File name: BKJT234-R1.docx (136.35K) Word count: 6816 Character count: 38941

	17		
1	Potential improvement in the safety and quality of traditional fermented soybean		
2	products: A narrative review		
3			
4	ABSTRACT		
5	Soybean is one of the important crops in the world because of its nutritional value. It has been		
6	processed into various fermented soybean products. During conventional soybean fermentation,		
7	microorganisms are involved, biochemical reactions occur, and bioactive components are produced.		
8	With the improvement of people's living standard, consumers pay more attention not only to the flavor		
9	and nutrition but also the safety and quality of fermented soybean foods. Public health issues related		
10	to fermented soybean foods include quality inconsistency, mycotoxins, formation of biogenic amines,	<	Commented [A1]: Is there Any direct correlation between health issue with quality inconsistency?
11	and high salt content. This paper reviews the common concerns associated with the safety and quality		Commented [A2R1]: I delete it
12	of fermented soybean foods and discusses the plausible efforts for the improvement. Attempts and		
13	methods have been proposed to ensure the safety of the fermentation process and food quality.		
14	Official regulations, the use of suitable microorganisms, high-quality cultivars utilization,		
15	administration of additives are plausible alternatives for safety and quality improvement. We		
16	conclude that implementing International food standard, guidelines and code of practice such as The		
17	Codex Alimentarius for fermented soybean products regulations_ and the use of scientific novel	_	Commented [A3]: Too wide perception, make it more specific, what are the standard regulations and scientific
18	methods (eg. starter combination, high-pressure processing, or low-dose gamma irradiation, additives		novel methods
19	usage, low salt fermentation technique) are the potential solutions to mitigate the issues and improve		Commented [A4R3]: Some examples have been added
20	the safety and quality of the products.		
21	Keywords: Fermentation, soybean, safety, quality, food, nutrition,		
22	_		
23	29 INTRODUCTION		Commented [A5]: Please make it be a better organized
24	Soybean (<i>Glycine max</i> [L.] Merrill) is a legume with high economic values and one of the affordable		Introduction Commented [A6R5]: Adjustments are made to make
25	primary protein sources for the human diet in the world, which can be used as meat substitution		introduction more organized Commented [A7]: Use term high economic value and
26	(Xiang et al. 2019). Soy-based foods are known as non-fermented (soymilk, okara, tofu, yuba, soy	\backslash	affordable in the same sentence is like something not really align
			Commented [A8R7]: I have deleted high economic values
	1		

27	nuts, etc.) and fermen	ted (miso, tempe,	sufu, natto, etc	.) (Liu 2008)	. Several studies have reporte	d
----	------------------------	-------------------	------------------	---------------	--------------------------------	---

- 28 that fermentation of soybean results in numerous beneficial properties. The fermentation process can
- 29 reduce cooking time, improve the nutritional quality of soybean, increase the bioactive components,
- 30 such as phytoestrogens, and make soybeans more digestible (Chen et al. 2016). Some fermented
- 31 soybean products (FSPs) are commonly used as condiments to raise the appetite and enhance the
- 32 flavor of foods (Xiang et al. 2019).
- 33 It is well known that antinutritional factors present in whole soybean exert negative impacts.
- 34 However, Whole soybean-also contains anti-nutritional factors such as trypsin inhibitor, lectins,
- 35 phytic acid, oligosaccharides, which raise concern for its consumption (Thakur et al. 2019). Anti-
- 36 nutritional factors in foods may cause negative effects associated with the absorption and utilization
- 37 of nutrients and the destruction of vitamins (Thakur et al. 2019). The deleterious influence on the
- 38 absorption of these anti-nutritional factors might can trigger deficiency nutrients, and result in various
- 39 human health-related issues especially in animals. The trypsin inhibitor activity in unfermented
- 40 soybean affects negatively on Broiler chicken's growth performance and pancreas weight (Hoffman

41 et al. 2019; Hemetsberger et al. 2021).

42

Studies have shown that microorganisms used in conventional fermentation could produce toxins that 43 contaminate FSPs (Chen et al. 2016). As an example, Rhizopus microspores, a common species used 44 as soybean fermentation starter, can produce two types of mycotoxins, namely rhizoxins and 45 46 rhizonins. These mycotoxins can be found in tempe (Indonesian fermented soybean cake) and fermented bean curd (Rohm et al. 2010). Aspergillus oryzae, another strain frequently used in 47 48 traditional soybean fermentation, produces also toxic secondary metabolites, such as cyclopiazonic 48 49 acid, aspergillomarasmine, 3-nitropropionic acid, kojic acid, maltoryzine, and violacetin (Blumenthal 2004). 50

- 20
- 51

Commented [A9]: If you mention non fermented and fermented one, (to connect the previous sentence to the next one) then add 1 more sentence to explain why you prefer to write more the fermentation one

Commented [A10R9]: I have added a sentence for smoother transition

Commented [A11]: Is it a whole soybean? Or just the fermented soybean? Again, please write in a good organization (smooth shifting

among sentences/paragraph) If you talk anti-nutrition, then add sentence(s) to talk the nutritional content in the previous

Commented [A12R11]: A sentence has been added and whole soybean is written also

Commented [A13]: This is a review, it means that every statement has to be strongly supported by references (not only one), then please dont use 'prediction' (use might, may be etc) statement

Commented [A14R13]: It has been adjusted with an example of negative effect of antinutrients

52 Biogenic amines (BA), harmful substances generated during the fermentation process are often found 53 in fermented soybean products from Korea, China, Japan, and Indonesia with significant concentrations (Park et al. 2019). Some fermented soybean products, such as fermented bean curd, 54 soy sauce, douchi and dajiang are usually preserved without sterilization, but through the use of high 55 salt addition. This technique prevents spoilage and prolongs the product's shelf life (Chen et al. 2016; 56 Liu et al. 2020). However, an excessive amount of salt intake may cause an expansion in circulating 57 58 volumes and lead to an increase in blood pressure in humans (Komnenov et al. 2019). Therefore, this narrative review aims to examine the problems associated with the safety and quality of common 59 60 fermented soybean products and discuss the potential solutions. 61 INCONSISTENCY OF QUALITY IMPROVEMENT 62 The making of traditional fermented soybean foods usually uses traditional fermentation methods. 63 There are common different techniques used to produce indigenous soy-based foods (figure 1). Asian 64 countries have diverse preparations for fermented soybean products according to indigenous recipes 65 (table 1). Standard Quality control is not might be difficult to be appropriately applied on the 66 conventional fermentation process so which results in inconsistent outcomes of the fermented 67 soybean products. Consistency of quality for particular fermented soybean food is determined by 68 several factors. For instance, the quality of tempeh (Indonesia fermented soybean cake) might be 69 affected by soybeans, process water, yeast, fermentation time, and fermentation temperature (Novita 70 71 & Abidin 2020). In daily practice, the process of fermentation is complicated and the product quality 72 mostly depends on several conditions, such as geographical location, environment, weather, season, 73 etc (Liu et al. 2020). As an example, Fthere is a possibility in Indonesia that the small-scale food 74 industry of fermented soybean could notvary- in meeting the national quality and safety of food standards provided by the government due to environmental factors and raw materials (Anggriawan 75 2018; Kadar et al. 2021). In Indonesia, it has been found that protein content in commercial products 76 of soy sauce was 1% less than the national standard (2.5%). Furthermore, many institutions cannot 77

Commented [A15]: There is no figure 1 in any part of this manuscript

Commented [A16R15]: It needs to add a figure

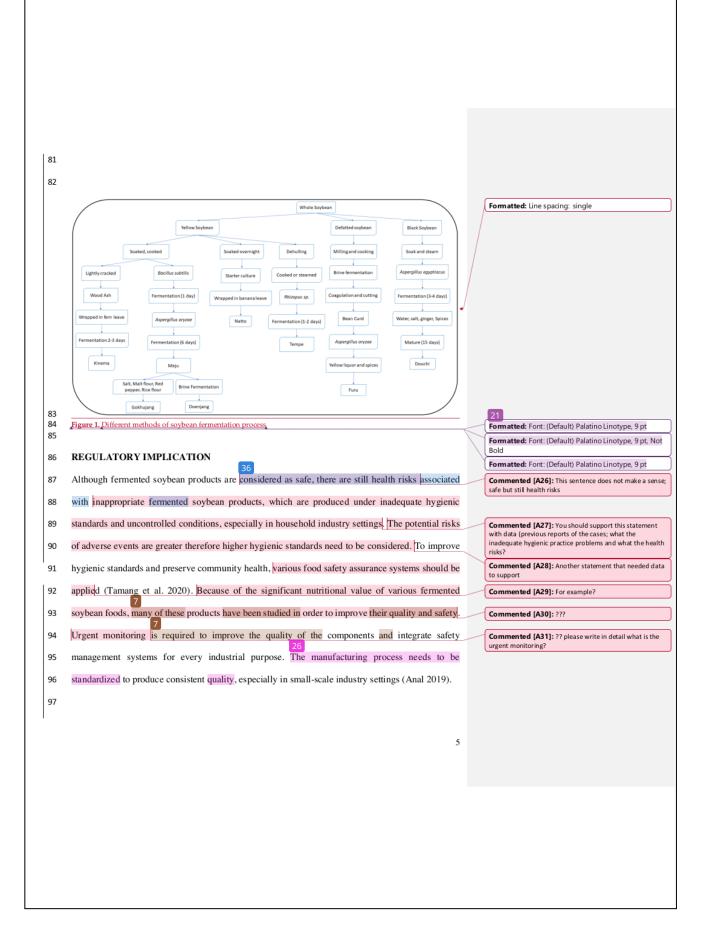
Commented [A17]: It is not the case. You can control everything, if you want to.

Commented [A18R17]: The sentence has been adjusted

Commented [A19]: This can be a mislead statement. To make it real, you need to support it with data Commented [A20R19]: It has been adjusted with references

Commented [A21]: Is that commercial product produced by traditional method? We cannot make it as general conclusion, if the case is the protein content less than the standard, then it just need to 'play' with formulation (reduce the water/non protein material used in the formulation)

Commented [A22R21]: It has been deleted


	distribution a	nd variety of ferme	inen sojt enni pronincio (rinning e
Country	Local name	Organolepti substrate	e characters, culinary and additional
India	Bekang		cky, paste, curry
	Tungrymbai		cky, curry, soup
	Hawaijar	Alkaline, sti	
Japan	Miso Natto	Alkaline, pa	
Indonesia	Kecap	Liquid, whe	sky, breakfast
indonesia	Ketjap	Syrup, black	
	Tauco		ste, use as flavoring agent
Korea	Chungkokjan		
	jeonkukjang,		
	cheonggukjar	ng	
	Deenjang	Alkaline, pa	
	Gochujang		l seasoning, red pepper
	Meju Kanjang	Alkaline, pa	ste meju, salt, water
China	Furu		soybean curd
	Yandou		sky, salted, snack
Faiwan	Jiang-sun	side-dish	
China, Taiwan	Douchi	Alkaline, pa	ste
	Mei tau za	Liquid	
	al,Kinema	Alkaline, sti	eky; curry
Bhutan			
Japan, Kon China	ea,Shoyu	Alkaline, liq	uid, seasoning
Indonesia	Tempe	Alkaline, sol	idaka
(Origin),	Tempe	Prinkilline, sol	ru, cure
Netherlands,			
Japan, USA			
<u>Country</u>		Local name	References
<u>India</u>		<u>Bekang</u>	<u>Chettri and Tamang (2014); Singh e</u> al. (2014a, 2014b)
		Tungrymbai	Chettri and Tamang (2015); Singh e
			al. (2014a, 2014b)
		Hawaijar	Singh et al. (2014a, 2014b)
		Miso	Tamang et al. 2016
<u>Japan</u>		Master	T i 2012
<u>Japan</u> Indonesia		Natto Kecap	Liu 2012 Alexandraki et al. 2013
<u>Iapan</u> Indonesia		Kecap	Alexandraki et al., 2013
		Kecap Tauco	<u>Alexandraki et al., 2013</u> Kindossi JM et al, 2012
Indonesia		Kecap	Alexandraki et al., 2013
Indonesia		<u>Kecap</u> <u>Tauco</u> <u>Chungkokjang (or</u>	<u>Alexandraki et al., 2013</u> Kindossi JM et al, 2012
Indonesia		Kecap Tauco Chungkokjang (or jeonkukjang, cheonggukjang Doenjang	Alexandraki et al., 2013 Kindossi JM et al, 2012 Hong et al. 2012 24 get al. (2013); Kim et al. (2016)
Indonesia		Kecap Tauco Chungkokjang (or jeonkukjang, cheonggukjang Doenjang Gochujang	Alexandraki et al., 2013 Kindossi JM et al., 2012 Hong et al. 2012 24 get al. (2013): Kim et al. (2016; Nam et al. 2012
Indonesia		Kecap Tauco Chungkokjang (or jeonkukjang, cheonggukjang Doenjang Gochujang Meju	Alexandraki et al., 2013 Kindossi JM et al., 2012 Hong et al. 2012 24 get al. (2013): Kim et al. (2016; Nam et al. 2012 Sanni et al. 1991
Indonesia Korea		Kecap Tauco Chungkokjang (or jeonkukjang, cheonggukjang Doenjang Gochujang Meju Kanjang	Alexandraki et al., 2013 Kindossi JM et al., 2012 Hong et al. 2012 24 get al. (2013): Kim et al. (2016) Nam et al. 2012 Sanni et al., 1991 Shin, D. H., 2012
Indonesia		Kecap Tauco Chungkajang (or jeonkukjang, cheonggukjang Doenjang Gochujang Meju Kanjang Furu	Alexandraki et al., 2013 Kindossi JM et al., 2012 Hong et al. 2012 24 get al. (2013): Kim et al. (2016; Nam et al. 2012 Sanni et al. 1991
Indonesia Korea		Kecap Tauco Chungkokjang (or jeonkukjang, cheonggukjang Doenjang Gochujang Meju Kanjang Eurru Yandou	Alexandraki et al., 2013 Kindosi IM et al., 2012 Hong et al., 2012 24 get al. (2013); Kim et al., 2016; Nam et al., 2012 Sanniet al., 1991 Shin, D. H. 2012 Lin et al. 2016
Indonesia Korea China Taiwan		Kecap Tauco Chungkokjang (or jeonkukjang Doenjang Gochuijang Gochuijang Meju Kanjang Furu Yandou Jiang-sun	Alexandraki et al., 2013 Kindossi JM et al., 2012 Hong et al. 2012 24 g et al. (2013): Kim et al. (2016) Nam et al. 2012 Sanni et al., 2012 Sinn, D. H., 2012 Lin et al. 2016 Chen, Y. S., 2010
Indonesia Korea		Kecap Tauco Chungkokjang (or jeonkukjang, cheonggukjang Ocenjang Gochujang Meju Kanjang Furu Yandou Jiang-sun Docuchi	Alexandraki et al., 2013 Kindossi JM et al., 2012 Hong et al. 2012 24 gretal. (2013): Kim et al. (2016: Nam et al. 2012 Sanniet al. 1991 Shin, D. H. 2012 Lin et al. 2016 Chen, Y. S., 2010 Yang et al. 2019b
Indonesia Korea China Taiwan	<u>u tan</u>	Kecap Tauco Chungkokjang (or jeonkukjang Doenjang Gochuijang Gochuijang Meju Kanjang Furu Yandou Jiang-sun	Alexandraki et al., 2013 Kindossi JM et al., 2012 Hong et al. 2012 24 g et al. (2013): Kim et al. (2016) Nam et al. 2012 Sanni et al., 2012 Sinn, D. H., 2012 Lin et al. 2016 Chen, Y. S., 2010
Indonesia Korea China Taiwan China, Taiwan	<u>utan</u>	Kecap Tauco Chungkokjang (or jeonkukjang, cheonggukjang Doenjang Gochujang Meju Kanjang Furu Yandou Jiang-sun Douchi Meitauza	Alexandraki et al., 2013 Kindossi JM et al., 2012 Hong et al., 2012 24, get al. (2013); Kim et al., (2016); Nam et al., 2012 Shin, D. H, 2012 Lin et al., 2016 Chen, Y. S., 2010 Yang et al., 2019a, 2019b 24
Indonesia Korea China Taiwan China, Taiwan	<u>utan</u>	Kecap Tauco Chungkokjang (or jeonkukjang, cheonggukjang Doenjang Gochujang Meju Kanjang Furu Yandou Jiang-sun Douchi Meitauza	Alexandraki et al., 2013 Kindossi JM et al., 2012 Hong et al. 2012 24 get al. (2013): Kim et al. (2016): Nam et al. 2012 Sanni et al. 1991 Shin, D. H., 2012 Lin et al. 2016 Chen, Y. S., 2010 Yang et al. 2019b 24 Cheftri et al. (2016): Cheftri and
Indonesia Korea China Taiwan China, Taiwan India, Nepal, Bi Japan, Korea, C	hina	Kecap Tauco Chungkokjang (or jeonkukjang, Chenogukjang Doenjang Gochujang Gochujang Gochujang Gochujang Gochujang Gochujang Guchu Kanjang Furru Yandou Jiang-sun Douchi Meitauza Kinema Shoyu	Alexandraki et al., 2013 Kindossi JM et al., 2012 Hong et al. 2012 24 g et al. (2013): Kim et al. (2016) Nam et al. 2012 Sanni et al. 1991 Shin, D. H., 2012 Lin et al. 2016 Chen, Y. S., 2010 Yang et al. 2019b 24 Chef tri et al. (2016): Cheftri and Tamang (2015): Singh et al. (2014a 2014b) Sugawara, E. (2010).
<u>łonesia</u> rea i <u>ma</u> iwan ima, Taiwan đia, Nepal, Bi	<u>hina</u> <u>įin),</u>	Kecap Tauco Chungkokjang (or jeonkukjang, cheonggukjang Doenjang Gochujang Maju Kanjang Kunu Yandou Jiang-sun Douchi Moitauza Kinema	Alexandraki et al. 2013 Kindossi JM et al. 2012 Hong et al. 2012 24. get al. (2013): Kim et al. (2016 Nam et al. 2012 Samiet al. 2012 Shin, D. H, 2012 Lin et al. 2016 Chen, Y. S. 2010 Yang et al. 2019b 24. Chefti et al. (2016): Cheftri and Tamang (2015): Singh et al. (2014a) 2014b)

Commented [A23]: SNI soy sauce is not a mandatory to apply, and 3-MCPD is not the criteria asked in SNI (please read the original draft of SNI for soy sauce Commented [A24R23]: I have deleted it

Commented [A25]: You cannot make a table just by taking other works. A table in a review supposed to contain varies of information taken from many sources

Formatted Table Formatted Table

/	Formatted: Left
	Formatted: Left
	Formatted: Left
///	Formatted: Left
[]]	Formatted: Left
$\langle \rangle$	Formatted: Left
4	Formatted: Left
/	Formatted: Left
/	Formatted: Left
	Formatted: Left
1	Formatted: Left
	Formatted: Left
/	Formatted: Left
	Formatted: Left
	Formatted: Left
/	Formatted: Left
/	Formatted: Left
/	Formatted: Left
-	Formatted: Left
-	Formatted: Left
-	Formatted: Left

	4		
98	There are several certification schemes, such as Good Manufacturing Practices (GMP), Good		
99	Agricultural Practices (GAP), Good Hygienic Practices (GHP), Hazard Analysis Critical Control		
100	Points (HACCP), and International Organization for Standardization (ISO) standards. These		
101	certifications should be implemented and supported by government policies in order to reduce public	\langle	Commented [A32]: All of them or either one?
102	health risks caused by fermented soy products. Having Codex Alimentarius registration for fermented		Commented [A33]: ? in what?
103	soybean products such as Kimchi, Gochujang and Doenjang will improve the quality standard		
104	especially in international trade and commerce (Lee et al. 2012). Food safety and quality audits are		
105	also used widely to ensure food safety systems and programs are compliant and effective. Evaluation		
106	of management system, assess the condition of premises and products, and certification to certain		
107	food safety and quality standards are the common application of the audits (Kotsanopoulos &		
108	Arvanitoyannis 2017). However, the objective of food safety and quality audits should be considered		
109	as one of constant improvement rather than onetime assessment results or policing exercise		
110	(Bradford-Knox 2017).	_	Commented [A34]: Those statements are general things,
111			you need to be more specific application in soy product fermentation. What is the standard and how to comply with that standard
112	ANTI-NUTRITIONAL FACTOR	_	Commented [A35]: You suppose to write, what are the
113	Several processing methods may diminish the anti-nutrient effects, such as soaking, pressure cooking,		anti-nutritional factors problems found in the traditional fermented soy products? How many (the content) of each, then write why the antinutritional factors in that amount is
114	blanching, germination, fermentation, autoclaving, genetic manipulation, and other methods (Thakur	\setminus	not good for human health, and how the recent ways to solve /reduce the problem
115	et al. 2019; ten Brink et al. 1990). By using these diverse methods alone or in combinations, it is		Commented [A36]: ? again, this is a review. You should not just make 'guessing'. Explain one by one how soaking reduce anti nutrient, how pressure cooking etc. and how
116	possible to lessen the content of anti-nutrients in foods (ten Brink et al. 1990). It has been suggested		many % the anti-nutrient is successfully decreased by each method
117	that autoclaving could be a better method to reduce levels of several anti-nutritional factors than other		Commented [A37]: Again, support with data (of previous reported in journals)
118	processing methods (Samtiya et al. 2020). However, comprehensive research is still needed to invent	Υ	Commented [A38]: From what point of view?
119	removal methods for heat-stable anti-nutritional factors existing in various foods without changing		
120	the quality of nutritional value. Heat-stable anti-nutritional factors include phytic acid, tannins,		
121	alkaloids, saponins, non-protein amino acids, and heat-labile group are lectins, cynogenic glycosides,		
122	protease inhibitors, and toxic amino acids (Thakur et al. 2019). When these substances present at low	_	Commented [A39]: are all of these compounds found in soy?
	6		

123	levels, some anti-nutritional factors and their metabolites may have positives health effects but limited		Commented [A40]: How low is low?
124	knowledge and information on their properties can result in health risks (Gemede & Ratta 2014).		Commented [A41]: Write it in detail
125			
126	Innovative fermentation methods have been conducted in order to reduce the level of anti-nutritional		Commented [A42]: What is the meaning of innovative
127	61 factors in fermented soybean products such as soybean meal. Bacillus fermentation on soybean meal		fermentation?
128	protein using Bacillus siamensis isolate JL8 has shown a significant reduction in major anti-		
129	20 nutritional factors (ANFs) in soybean meal (SBM) namely glycinin, β-conglycinin, and trypsin		
130	inhibitor by 86.0%, 70.3%, and 95.01% respectively (Zheng et al. 2017). A similar study using solid-		
131	57 state <i>Bacillus subtilis</i> fermentation method was able to reduce levels of beta-conglycinin subunits,		
132	glycinin subunits, and trypsin inhibitors by 70%, 50%, 58% respectively in soybean meal after 24		
133	hours (Seo and Cho 2016). Additionally, soybean meal fermentation using the suitable proportion of		
134	Bacillus subtilis, Bacillus lactis, and Saccharomyces cerevisiae at 35°C may improve the levels of		
135	free amino acids, small peptides and reduced the activity of protease inhibitor (Zhang et al. 2017).		
136			
137	MYCOTOXIN CONTAMINATION		
138	The microorganisms involved in FSPs, especially in traditional spontaneously fermented products,		
139	are mostly unknown. However, predominant microorganisms used as in common fermentation have		Commented [A43]: Reference(s)?
140	been described (Figure 2). Mycotoxins are secondary metabolites of molds that may harm the health		Commented [A44]: I could not find the figure anywhere
141	of humans or animals after being consumed and it could contribute also to unwanted effects on crops		in this manuscript
142	(Komnenov et al. 2019). If ingested, mycotoxins can cause acute illness or chronic episodes of illness,		Commented [A45]: How much the minimum
143	called mycotoxicosis. The word Mycotoxin is derived from Greek word ¹⁴² <i>mykes</i> ¹²² means fungus,		(concentration) limit to cause the illness Formatted: Highlight
144	and Latin word means poison or toxin (Kirovska & Velickova 2021). Mycotoxin is		
145	12 produced during fungal growth and can be found in the hyphae and spores of organisms. Several		
146	mycotoxins such as aflatoxins, ochratoxins, deoxynivalenol (DON), trichothecenes, zearalenone,		
147	citrinin were reported to be present in fermented food products (Omotayo et al. 2019; Sivamaruthi et	_	Commented [A46]: Remember your focus is fermented
148	al. 2019). Some trichothecene mycotoxins, such as DON and T-2 toxins (a trichothecene produced		soybean products. Are all those mycotoxin presence in the fermented soy products?
I	7		

149	by Fusarium spp) can directly impair mucosal tissues through disruption of the intestinal epithelial
150	barrier and further enable translocation of intestinal commensal microbiota, and pathogens. The result
151	could be the elevation of microorganism infection and inflammation (Nazhand et al. 2020). Aflatoxin
152	(AF) is a common example of mycotoxins synthesized by Aspergillus flavus, A. parasiticus and A.
153	nomius. Aflatoxins are chemically derived from difurancoumarins with bifuran-based coumarin
154	nuclei groups and lactone rings (Aflatoxin Gs) or pentanone rings (Aflatoxin Bs and Aflatoxin Ms).
155	During the biosynthesis of AF in plants by A. flavus and A. parasiticus, the main substrate of hexanoyl
156	is converted to polyketide using a polyketide synthase and two fatty acid synthases (Nazhand et al.
157	2020).
158	
159	It has been reported that 97.5% of tested samples of 40 domestic and imported (from Japan) soy
160	sauces sold in China were contaminated with DON. The mean incidence rate of DON contamination
161	in domestic soy sauces was 97.1% with a concentration range from 4.5 to 1245.6 μ g/l, whereas those
162	imported from Japan were 100% in a range of 30.5 – 238.3 µg/l (Zhao et al. 2013). Meju prepared
163	without additives may result in isolation of Aspergillus ruber which ability to release aflatoxin B_1 and
164	the ochratoxin A (Shukla et al. 2017). Aspergillus oryzae and Aspergillus sojae are commonly used
165	in the soybean fermentation process such as soy sauce, and miso. These strains are closely associated
166	with the aflatoxigenic species A. flavus and A. parasiticus. Although these fermented soybean
167	products have rarely been shown to produce aflatoxin, they may contain homologs of several aflatoxin
168	biosynthesis pathway genes (Shukla et al. 2017). Doenjang prepared through inoculation with a
169	natural starter is commonly contaminated with aflatoxin. The fungal community present during
170	traditional production is found to be the aflatoxigenic Aspergillus flavus (Zain 2011).
171	
172	MYCOTOXIN MITIGATION
173	Official regulation and policy play an essential role in the mitigation of mycotoxin levels in foods
174	among many countries. According to FAO data, at least 99 countries regulate mycotoxins content
1	

Commented [A47]: Why do you need to have this sub chapter spesific just for mycotoxin? While there is no sub-chapter of mitigation of other items

	27	
175	for food and/or feed in 2003. The number of countries shows an increase of about 30 percent	Commented [A48]: Is there any newest data?
176	compared to 1995. The total population in these countries represents about 87% of the total world	
177	population ("Worldwide Regulations for Mycotoxins in Food and Feed in 2003" n.d.). On top of that,	
178	perhaps special approach for the reduction of mycotoxin level in fermented soybean product need to $\frac{22}{40}$	
179	be explored. As an example, fermentation of Meju using plant extracts (Nelumbo nucifera leaves,	
180	Ginkgo biloba leaves, and Allium sativum cloves) may significantly influence fungal microflora,	Commented [A49]: ?
181	leading to its quality improvement. This outcome could be due to the diminishing effects of the	
182	extracts against toxin-producing fungal pathogens (Shukla et al. 2017).	
183	42	
184	BIOGENIC AMINES	
185	Biogenic amines (Bas) are low molecular weight, non-volatile nitrogenous bases with an aliphatic,	
186	aromatic, or heterocyclic structure, which have been found in fermented foods, such as fish products,	Commented [A50]: Again, remember that your focus is fermented soybean products – therefore, everything you
187	cheese, wine, beer, miso, chunjang, jajang, kimchi, sufu etc. (Komprda et al. 2007; Pachlová et al.	write here should only relate to soyfoods
188	2012; Renes et al. 2014; Alvarez & Moreno-Arribas 2014; Bai et al. 2013; Lee et al. 2019; Shukla et	
189	al. 2010; Guan et al. 2013; Byun & Mah 2012). The name of a biogenic amine is ascribed to the name	
190	of the amino acid from which it is derived. For instance, histamine is derived from the decarboxylation	
191	of histidine, and tyramine is formed from tyrosine through the same reaction (Santos 1996). The	
192	formation of biogenic amines in foods is mainly due to the presence of bacteria that are able to	
193	perform decarboxylation to certain amino acids (Renes et al. 2014; Bover-Cid et al. 2003; Buňková	
194	et al. 2013).	
195		
196	The bacteria with amino acid-decarboxylase activity are Pseudomonas, Clostridium, Bacillus,	Commented [A51]: One paragraph should contains at least two sentences
197	Photobacterium, Enterobacteriaceae family (Escherichia, Klebsiella, Citrobacter, Proteus, Shigella,	(
198	and Salmonella), Micrococcaceae family (Staphylococcus, and Micrococcus), Enterococcus,	
199	Lactobacillus, Carnobacterium, Pediococcus, Lactococcus, and Leuconostoc (Santos 1996; Stadnik	
200	and J. Dolatowski 2010).	Commented [A52]: Check how to cite
I	9	

201			
202	In low amounts, the intake of BA in the human diet is usually not harmful to health because it can be		Commented [A53]: How low is low? Add data
203	detoxified by amine oxidase enzymes present in the intestine. These enzymes namely monoamine		
204	oxidase (MAO), diamine oxidase (DAO), and histamine N-methyltransferase (HNMT) can		
205	metabolize dietary BA in healthy people (Fogel et al. 2007). However, BA can turn into toxic		
206	metabolites that can threaten human health when the amount in the diet is too high or when the		Commented [A54]: How high is too high? Add data
207	detoxification ability is inhibited or impaired in humans (Anderson 2008; Ruiz-Capillas & Herrero		
208	2019). Since biogenic amines accumulation might occur if there are uncontrolled microbial enzymatic		
209	reactions (Halász et al. 1994), therefore the presence of BA in food is always undesirable because if		
210	absorbed at high concentration, it can cause headache, respiratory distress, palpitation, hypo or	_	Commented [A55]: Again, scientific writing always supports every single qualitative word with data
211	hypertension, and allergic reactions (Restuccia et al. 2015).		(quantitative)
212			
213	BIOGENIC AMINE MITIGATION		
214	The formation of BA in fermented soybean products is a complex phenomenon that depends on		
215	several factors, such as BA-producing strain or species, salt concentration, and high temperatures		
216	(Bai et al. 2013; Chun et al. 2020). Different concentrations of salt may affect the formation of BA.		
	This happens due to high salt levels can inhibit the growth of microorganisms that produce biogenic		Commented [A56]: Data?
217			commented proof. Batar
217 218	amino acids, so that the production of decarboxylase enzymes decreases (Chun et al. 2020; Chin &		
218	amino acids, so that the production of decarboxylase enzymes decreases (Chun et al. 2020; Chin &		
218 219	amino acids, so that the production of decarboxylase enzymes decreases (Chun et al. 2020; Chin & Koehler 1986). It has been shown that thermal breakdown of BA can occur during high-temperature		Commented [A57]: In what product?
218 219 220	amino acids, so that the production of decarboxylase enzymes decreases (Chun et al. 2020; Chin & Koehler 1986). It has been shown that thermal breakdown of BA can occur during high-temperature treatment such as cooking. After 10 minutes of frying at 200°C, there is approximately a 40%		
218 219 220 221	amino acids, so that the production of decarboxylase enzymes decreases (Chun et al. 2020; Chin & Koehler 1986). It has been shown that thermal breakdown of BA can occur during high-temperature treatment such as cooking. After 10 minutes of frying at 200°C, there is approximately a 40% 37 reduction in the levels of tryptamine and b-phenylethylamine. While other Bas namely cadaverine,		
218 219 220 221 222	amino acids, so that the production of decarboxylase enzymes decreases (Chun et al. 2020; Chin & Koehler 1986). It has been shown that thermal breakdown of BA can occur during high-temperature treatment such as cooking. After 10 minutes of frying at 200°C, there is approximately a 40% 37 reduction in the levels of tryptamine and b-phenylethylamine. While other Bas namely cadaverine, histamine, tyramine, spermidine, and spermine show decreases ranging from about 10% to 20% (Bai		
218 219 220 221 222 222	amino acids, so that the production of decarboxylase enzymes decreases (Chun et al. 2020; Chin & Koehler 1986). It has been shown that thermal breakdown of BA can occur during high-temperature treatment such as cooking. After 10 minutes of frying at 200°C, there is approximately a 40% 37 reduction in the levels of tryptamine and b-phenylethylamine. While other Bas namely cadaverine, histamine, tyramine, spermidine, and spermine show decreases ranging from about 10% to 20% (Bai		Commented [A57]: In what product? Commented [A58]: In where? What level? Global?
218 219 220 221 222 223 223	amino acids, so that the production of decarboxylase enzymes decreases (Chun et al. 2020; Chin & Koehler 1986). It has been shown that thermal breakdown of BA can occur during high-temperature treatment such as cooking. After 10 minutes of frying at 200°C, there is approximately a 40% 27 reduction in the levels of tryptamine and b-phenylethylamine. While other Bas namely cadaverine, histamine, tyramine, spermidine, and spermine show decreases ranging from about 10% to 20% (Bai et al. 2013).		Commented [A57]: In what product?
218 219 220 221 222 223 223 224 225	amino acids, so that the production of decarboxylase enzymes decreases (Chun et al. 2020; Chin & Koehler 1986). It has been shown that thermal breakdown of BA can occur during high-temperature treatment such as cooking. After 10 minutes of frying at 200°C, there is approximately a 40% 37 reduction in the levels of tryptamine and b-phenylethylamine. While other Bas namely cadaverine, histamine, tyramine, spermidine, and spermine show decreases ranging from about 10% to 20% (Bai et al. 2013).		Commented [A57]: In what product? Commented [A58]: In where? What level? Global?
218 219 220 221 222 223 223 224 225	amino acids, so that the production of decarboxylase enzymes decreases (Chun et al. 2020; Chin & Koehler 1986). It has been shown that thermal breakdown of BA can occur during high-temperature treatment such as cooking. After 10 minutes of frying at 200°C, there is approximately a 40% [37] reduction in the levels of tryptamine and b-phenylethylamine. While other Bas namely cadaverine, histamine, tyramine, spermidine, and spermine show decreases ranging from about 10% to 20% (Bai et al. 2013).		Commented [A57]: In what product? Commented [A58]: In where? What level? Global?
218 219 220 221 222 223 223 224 225	amino acids, so that the production of decarboxylase enzymes decreases (Chun et al. 2020; Chin & Koehler 1986). It has been shown that thermal breakdown of BA can occur during high-temperature treatment such as cooking. After 10 minutes of frying at 200°C, there is approximately a 40% [37] reduction in the levels of tryptamine and b-phenylethylamine. While other Bas namely cadaverine, histamine, tyramine, spermidine, and spermine show decreases ranging from about 10% to 20% (Bai et al. 2013).		Commented [A57]: In what product? Commented [A58]: In where? What level? Global?
218 219 220 221 222 223 223 224 225	amino acids, so that the production of decarboxylase enzymes decreases (Chun et al. 2020; Chin & Koehler 1986). It has been shown that thermal breakdown of BA can occur during high-temperature treatment such as cooking. After 10 minutes of frying at 200°C, there is approximately a 40% [37] reduction in the levels of tryptamine and b-phenylethylamine. While other Bas namely cadaverine, histamine, tyramine, spermidine, and spermine show decreases ranging from about 10% to 20% (Bai et al. 2013).		Commented [A57]: In what product? Commented [A58]: In where? What level? Global?
218 219 220 221 222 223 223 224 225	amino acids, so that the production of decarboxylase enzymes decreases (Chun et al. 2020; Chin & Koehler 1986). It has been shown that thermal breakdown of BA can occur during high-temperature treatment such as cooking. After 10 minutes of frying at 200°C, there is approximately a 40% [37] reduction in the levels of tryptamine and b-phenylethylamine. While other Bas namely cadaverine, histamine, tyramine, spermidine, and spermine show decreases ranging from about 10% to 20% (Bai et al. 2013).		Commented [A57]: In what product? Commented [A58]: In where? What level? Global?

toxic limit of BA content in fermented soybean products is 1000 mg/kg (Santos 1996) and 30 mg/kg 227 228 for β-phenylethylamine, 100 mg/kg for histamine, and 100 mg/kg for tyramine (ten Brink et al. 1990). Attempts have been made to reduce the formation of BA in foods such as handling and processing 229 under sanitary conditions, using some amine-negative starter cultures, adding some probiotic 230 bacterial strains alone or in combination with the starter cultures, high-pressure processing, or low-231 dose gamma irradiation (Oh et al. 2014; Kim et al. 2005a; Mendes et al. 2005; Zhang et al. 2013). 232 233 In order to reduce BA concentration in fermented soybean foods, the use of a selected starter culture 234 containing bacteria with less decarboxylase activity is one of the common ways to reduce the 235 development of BA in soybean fermented foods (Alvarez & Moreno-Arribas 2014). The application 236 of Bacillus subtilis and Bacillus amyloliquefaciens strains are able to reduce histamine levels in vitro 237 by 27 - 46% and 70%, and tyramine contents by 42 - 59% and 71% respectively (Kim et al. 2012). 238 Besides that, the use of Lactobacillus plantarum as a starter culture could decrease histamine and 239 total BA content by 58 - 100% and 27%, respectively (Lee et al. 2016; Kung et al. 2017). Besides 240 the application of BA low producing microorganisms for fermentation, the use of additives has been 241 proposed as an alternative method for this purpose. The addition of ethanol to the dressing mixture 242 during soybean fermentation has shown BA content reduction. It might be due to ethanol¹²s ability 243 to inhibit the degradation of water-soluble protein during the ripening stage (Qiu et al. 2018). Another 244 additive such as nicotinic acid may reduce tyrosine decarboxylase activity of Enterococcus faecium 245 246 isolated from cheonggukjang. It suggests that nicotinic acid could be used as tyrosine decarboxylase inhibitor to reduce tyramine content in vitro and in situ (Kang et al. 2018). Additionally, the 247 application of gamma irradiation may not only reduce the usage of salt but also lessen biogenic amine 248 249 levels during soybean fermentation (Kim et al. 2005). Though studies have described several methods to decrease BA content in vitro and in situ, practical application is still crucial to ensure the production 250 of safe fermented food products (Park et al. 2019). 251 252

Commented [A59]: Give example

Commented [A60]: Range of pressure applied?

Commented [A61]: Range of dose?

Commented [A62]: ?

Commented [A63]: ?

253 HIGH SALT CONTENT

.

254	Fermented soybean products might use different methods and some of them may require a certain	
255	amount of sald. In general, the salt content is above 18% in soy sauce, 10-15% in douchi, and over	Commented [A64]: Please re-write, this sentence is confusing
256	10% in dajiang (Liu et al. 2020). Sodium Chloride is able to control water activity, affect microbial	
257	growth and fermentation speed, make the fermented soybean products more savory and extend their	
258	shelf life (Liu et al. 2020). Salt is an essential seasoning used for making traditional fermented soy	Commented [A65]: Re-write
259	paste such as doenjang (Korea), miso (Japan), dajiang (China), and thua nao (Thailand) as well as	
260	ganjang, a soy sauce made with fermented soybean in Korea (Shim et al. 2016; Chun et al. 2020). As	
261	an example, a traditional Korean doenjang is made by fermentation of doenjang-meju bricks soaked	
262	in high solar salt concentrations (approximately 16 -18%) for one to two months (Jeon et al. 2016).	Commented [A66]: Solar ?????
263	Different concentrations of salt (NaCl) and temperature may influence microbial development and	
264	organoleptic quality fermented soybean products (Shim et al. 2016). Salt can inhibit the enzyme	
265	maturation process in the hydrolysis of proteins and lipids. The lower salt content in sufu (fermented	
266	tofu) can result in a decrease in hardness, elasticity, and the degree of degradation of proteins and	
267	lipids. Reducing the salt content can speed up the cooking time of the sufu, but it will also cause the	
268	sufu to spoil during the ripening stage with less salt content equal to 50 g kg ⁻¹ (Han et al. 2003).	
269		
270	Salt addition may reduce essential bioactive components that contribute to antioxidant properties	Commented [A67]: Again, the review is not a prediction
271	during soybean fermentation, such as isoflavones. The amount of total isoflavones during the process	
272	sufu making can lose 68.7% of total isoflavones from soybeans due to leaching from materials. The	
273	change in isoflavones content is mainly during the preparation of tofu and salting of pehtze.	
274	Furthermore, Nacl concentration can inhibit isoflavones hydrolysis by beta-glucosidase activity	
275	during the fermentation (Li-Jun et al. 2004). Similarly, higher concentrations of NaCl in douchi	
276	(Chinese fermented black soybeans) production process may decrease isoflavone level and inhibit	
277	enzyme activity. It has been shown that total isoflavones content in douchi fermentation process	
278	reduced by 61% from raw soybeans during pre-fermentation (43%) and post-fermentation (18%)	
1	12	

	20		
279	when the sodium content was 10% (Wang et al. 2007). Salt also can inhibit β glucosidase activity so		
280	that the conversion of isoflavone glucosides to isoflavone aglycones decreased. As a result, there is		
281	concern that high salt intake is associated with increased consumption of fermented products		
282	soybeans due to high salt is one of the major risk factors for hypertension (Komnenov et al. 2019).		
283	Therefore, it is necessary to make efforts to maintain the physicochemical properties and sensory	_	Commented [A68]: This subchapter is going everyw please make it more focus on the list of salt content of
284	quality of fermented soybean products by reducing the addition of salt, which appears as a problem		several fermented soy foods, and write of why do fermented soy foods contain high salt, what the possib
285	in the field.		effect of those high salt on the human health, then ho solve the problem?
286			
287	Despite this, the increase of government oversight and control in response to salt reduction, such as		
288	setting up the maximum amount of salt per-serving target, it is also necessary to engage with		
289	producers to reduce salt use in fermented soybean products. Salt reduction in fermentation has been		
290	the subject of studies. One common strategy is to identify the lowest salt concentration under which		
291	the growth of the fermenting microorganisms, as well as the flavor and texture of the fermented		
292	soybean products, will not be adversely affected. Several novel methods have been developed to		
293	produce low salt, or no salt fermented soybean products, such as natto, tempe, and kinema (Wang et		
294	al. 2007).		
295			
296	Selection and use of high-quality soybean cultivars	_	Commented [A69]: What is this? Part of what?
297	Food-grade soybeans are the raw materials for soy food products, with or without fermentation	_	Commented [A70]: Is there any non-food grade sovbean??
298	including tofu, soymilk, miso, natto, soy sprouts, and tempeh. Most food-grade cultivars share several		Joyucanti
299	common traits. They are non-GMOs have a high seed quality lacking mottling, cracking, etc. and,		Commented [A71]: For example (name of variety?
300	because most soy food products require a soaking step, thus rapid water uptake is essential (Anderson	/	Commented [A72R71]:) Commented [A73]: ????? so GMO soy is not food
301	et al. 2019). Besides these traits, the advance of soybean breeding and cropping system provides not		grade??? Reference?????
302	only better chemical composition but also yields preservation through resistance improvement toward		
303	weed, pathogen, insect pest, and abiotic stress (Anderson et al. 2019). Selection and use of cadmium		
304	(Cd) safe soybean cultivars for fermentation may avoid the undesirable metal accumulation in the	_	Commented [A74]: ?? is the cultivar available everywhere globally?
I	13		

(8): This subchapter is going everywhere, re focus on the list of salt content of soy foods, and write of why do ds contain high salt, what the possible is salt on the human health, then how to to zo

305	human body from Cd contaminated soil (Zhi et al. 2020; 2015). A particular cultivar of soybean might
306	be more suitable for specific fermented soybean products, for example, Saedanbaek cultivar provides
307	better quality standards than other cultivars (Jinpung, Daepung 2, Pyeongwon, Cheonga and
308	Saeolkong) for the fermentation process of the soy paste (Shin et al. 2019). This cultivar has shown
309	an ability to produce higher amylase and protease activities, amount of viscous substance, and amino-
310	type nitrogen contents (Shin et al. 2019).

312 Conclusions

313	Fermented soybean products (FSPs) have been the attention of scientific studies and consumers due
314	to their nutritional values, bioactive components, and flavor profiles and texture. Even though FSPs
315	are considered as safe foods, along with the development of society, people have become more aware
316	of food-borne illness possibilities. Urgent attention is required to improve the safety and quality of
317	fermented soybean products to prevent unwanted public health problems in the future. Anti-
318	nutritional factors, pathogenic microorganisms and mycotoxins, the production of biogenic amines,
319	the use of high concentration of salt during the fermentation process, and other safety hazards are still
320	significant issues in fermented soybean production. In order to promote nutritional quality and safe
321	fermented soybean foods, the following aspects are essential and should be taken into consideration.
322	First, food regulation policy and standards need to be implemented, especially in industrial
323	fermentation. Second, the application of pure, or excellent suitable strains under a controlled
324	environment will produce a better conventional soybean fermentation process.
325	

326 Acknowledgments

- 327 The Institute for Research and Community Service of Wijaya Kusuma University, Surabaya,
- 328 Indonesia has supported this paper through internal grant scheme (No. 22/LPPM/UWKS/2021).

329

330 References

14

Commented [A75]: ??

Commented [A76]: ??

Commented [A77]: You did not explain much about this in the manuscript

n on coods <i>rends</i> and ecies gris-	Fiel For +Bo For +Bo
eends and ecies gris-	For +Bo For
eends and ecies gris-	For +Bo For
and ecies gris-	For +Bo For
ecies gris- lyten	For +Bo For
ecies gris- lyten	For +Bo For
gris-	For +Bo For
gris-	For +Bo For
lyten	For +Bo For
	+Bo For
tory,	
ding	
ennis	
nesia	
ng (a	
026–	
yzae,	
yme	
y 39	
	026– vzae, zyme

eld Code Changed

Formatted: Default Paragraph Font, Font: (Default) +Body (Calibri), 11 pt Formatted: Default Paragraph Font, Font: (Default) +Body (Calibri), 11 pt

356	Bover-Cid S, Hernández-Jover T, Miguélez-Arrizado MJ, Vidal-Carou MC. 2003. "Contribution of
357	Contaminant Enterobacteria and Lactic Acid Bacteria to Biogenic Amine Accumulation in
358	Spontaneous Fermentation of Pork Sausages." European Food Research and Technology 216
359	(6): 477–82.
360	Bradford-Knox R. 2017. "Approaches to and the Management of the Audit Process in the Food
361	Industry." British Food Journal 119 (4): 759-70.
362	Ten Brink B, Damink C, Joosten HM, In: Veld JH. 1990. "Occurrence and Formation of
363	Biologically Active Amines in Foods." International Journal of Food Microbiology 11 (1):
364	73–84.
365	Buňková L, Adamcová G, Hudcová K, Velichová H, Pachlová V, Lorencová E, Buňka F. 2013.
366	"Monitoring of Biogenic Amines in Cheeses Manufactured at Small-Scale Farms and in
367	Fermented Dairy Products in the Czech Republic." Food Chemistry 141 (1): 548-51.
368	Byun BY, Mah JH. 2012. "Occurrence of Biogenic Amines in Miso, Japanese Traditional Fermented
369	Soybean Paste." Journal of Food Science 77 (12): T216-23.
370	Chang MI, Kim JY, Kim US, Baek SH. 2013. "Antioxidant, tyrosinase inhibitory, and anti-
371	proliferative activities of gochujang added with cheonggukjang powder made from sword
372	bean". KFST 45:221–226
373	Chen F, Zhang X, and Li Z. 2016. "Chapter 15 Safety of Fermented Products Based on Soybean."
374	In Regulating Safety of Traditional and Ethnic Foods, edited by Vishweshwaraiah Prakash,
375	Olga Martín-Belloso, Larry Keener, Siân Astley, Susanne Braun, Helena McMahon, and
376	Huub Lelieveld, 311–18. San Diego: Academic Press.
377	Chen YS, WuHC, Liu CH, Chen HC, Yanagida F. 2010. Isolation and characterization of lactic acid
378	bacteria from jiang-sun (fermented bamboo shoots), a traditional fermented food in Taiwan,
379	J. Sci. Food Agric. 90: 1977–1982. doi: 10.1002/jsfa.4034

380	Chettri R, Tamang JP. 2014. "Functional properties of tungrymbai and bekang, naturally fermented	
381	soybean foods of North East India". IJFF 3(1):87-103. https://doi.org/10.5958/2321-	
382	712X.2014.01311.8	
383	Chettri R, Tamang JP. 2015. "Bacillus species isolated from tungrymbai and bekang, naturally	
384	fermented soybean foods of India". Int J Food Microbiol 197:72-76.	
385	https://doi.org/10.1016/j.ijfoodmicro.2014.12.021	
386	Chettri R, Bhutia MO, Tamang JP. 2016. "Poly-7-glutamic acid (PGA)-producing bacillus species	
387	isolated from kinema, Indian fermented soybean food". Front Microbiol Frontiers 7:971	
388	Chin KD, Koehler PE. 1986. "Effect of Salt Concentration and Incubation Temperature on Formation	
389	of Histamine, Phenethylamine, Tryptamine and Tyramine During Miso Fermentation."	
390	Journal of Food Protection 49 (6): 423–27.	
391	Chun BH, Kim KH, Jeong SE, Jeon CO. 2020. "The Effect of Salt Concentrations on the	
392	Fermentation of Doenjang, a Traditional Korean Fermented Soybean Paste." Food	
393	Microbiology 86 (April): 103329.	
394	Fogel WA, Lewinski A. 2007. "Histamine in Food: Is There Anything to Worry About?" Biochemical	
395	Society Transactions 35 (Pt 2): 349-52.	
396	Frias J, Penas E, Martinez-Villaluenga C. 2017. "Chapter 16 Fermented pulses in nutrition and health	
397	promotion". In: Fermented foods in health and disease prevention, pp 385-416	Formatted: Font: Itali
398	Gemede HF, Ratta N. 2014. "Antinutritional Factors in Plant Foods: Potential Health Benefits and	
399	Adverse Effects." International Journal of Nutrition and Food Sciences 3 (4): 284.	
400	Guan RF, Liu ZF, Zhang JJ, Wei YX, Wahab S, Liu DH, Ye XQ. 2013. "Investigation of Biogenic	
401	Amines in Sufu (Furu): A Chinese Traditional Fermented Soybean Food Product." Food	
402	Control 31 (2): 345–52.	
403	Halász A, Barath A, Simon-Sarkadi L, Holzapfel W. 1994. "Biogenic Amines and Their Production	
404	by Microorganisms in Food." Trends in Food Science & Technology 5 (2): 42-49.	
I		
	17	

405	Han BZ, Wang JH, Rombouts FM, Nout MR. 2003. "Effect of NaCl on Textural Changes and Protein	
406	and Lipid Degradation during the Ripening Stage of Sufu, a Chinese Fermented Soybean	
407	Food." Journal of the Science of Food and Agriculture 83 (9): 899-904.	
408	Hemetsberger F, Hauser T, Domig KJ, Kneifel W, Schedle K. 2021. Interaction of Soybean Varieties	
409	and Heat Treatments and Its Effect on Growth Performance and Nutrient Digestibility in	
410	Broiler Chickens. Animals 11 (9): 2668.	
411	Hoffmann, Thurner S, Ankerst D, Damme K, Windisch W, Brugger D. 2019. Chickens' gGrowth	
412	Pperformance and pPancreas Ddevelopment eExposed to sSoy eCake +Varying in {Trypsin	
413	iInhibitor aActivity, aHeat-dDegraded 4Lysine Concentration, and pProtein sSolubility in	
414	pPotassium hHydroxide. Poultry Spcience 98 (6): 2489-2499.	Formatted: Font: Italic
415	Hong SW, Choi JY, Chung KS. 2012. "Culture-based and denaturing gradient gel electrophoresis	Formatted: Font: Italic
416	analysis of the bacterial community from Chungkookjang, a traditional Korean fermented	
417	soybean food". J Food Sci 77:572-578.	
418	Jeon HH, Jung JY, Chun BH, Kim MD, Baek SY, Moon JY, Yeo SH, Jeon CO. 2016. "Screening	
419	and Characterization of Potential Bacillus Starter Cultures for Fermenting Low-Salt Soybean	
420	Paste (Doenjang)." Journal of Microbiology and Biotechnology 26 (4): 666-74.	
421	Kadar AD, Astawan M, Putri SP, Fukusaki E. 2020. Metabolomics-Based Study of the Effect of Raw	
422	Materials to the End Product of Tempe - An Indonesian Fermented Soybean. Metabolites 10	
423	(9): 367.	
424	Kang HR, Kim HS, Mah JH, Kim YW, Hwang HJ. 2018. "Tyramine Reduction by Tyrosine	
425	Decarboxylase Inhibitor in Enterococcus Faecium for Tyramine Controlled Cheonggukjang."	
426	Food Science and Biotechnology 27 (1): 87–93.	
427	Kim JH, Ahn HJ, Lee JW, Park HJ, Ryu GH, Kang IJ, Byun MW. 2005. "Effects of Gamma	
428	Irradiation on the Biogenic Amines in Pepperoni with Different Packaging Conditions." Food	
429	Chemistry 89 (2): 199–205.	
I		
	18	

430	Kim JH, Kim DH, Ahn HJ, Park HJ, Byun MW. 2005. "Reduction of the Biogenic Amine Contents
431	in Low Salt-Fermented Soybean Paste by Gamma Irradiation." Food Control 16 (1): 43-49.
432	Kim MJ, Kwak HS, Jung HY, Kim SS. 2016a. "Microbial communities related to sensory attributes
433	in Korean fermented soy bean paste (doenjang)". Int Food Res J 89 (Pt 1):724-
434	732.https://doi.org/10.1016/j.foodres.2016.09.032
435	Kim YS, Cho SH, Jeong DY, Uhm TB. 2012. "Isolation of Biogenic Amines-Degrading Strains of
436	Bacillus subtilis and Bacillus amyloliquefaciens from Traditionally Fermented Soybean
437	Products." Korean Journal of Microbiology 48 (3): 220-24.
438	Kindossi JM, Anihouvi, VB, Vieira-Dalodé G, Akissoé NH, Jacobs A, Dlamini N, & Hounhouigan,
439	DJ. 2012. "Production, consumption, and quality attributes of Lanhouin, a fish-based
440	condiment from West Africa". Food Chain 2(1), 117-130.
441	Kirovska I, Velickova N. 2021. "The Importance of Qualitative and Quantitative Biological Methods
442	for Evaluation and Screening of Mycotoxins." Albanian Journal of Medical and Health
443	Sciences 55 (February): 1–6.
444	Komnenov D, Levanovich PE, Rossi NF. 2019. "Hypertension Associated with Fructose and High
445	Salt: Renal and Sympathetic Mechanisms." Nutrients 11 (3): 569.
446	Komprda T, Smělá D, Novická KA, Kalhotka L, Šustová K, Pechová P. 2007. "Content and
447	Distribution of Biogenic Amines in Dutch-Type Hard Cheese." Food Chemistry 102 (1): 129-
448	37.
449	Kotsanopoulos KV, Arvanitoyannis IS. 2017. "The Role of Auditing, Food Safety, and Food Quality
450	Standards in the Food Industry: A Review." Comprehensive Reviews in Food Science and
451	Food Safety 16 (5): 760-75. https://doi.org/10.1111/1541-4337.12293.
452	Kung HF, Lee YC, Huang YL, Huang YR, Su YC, Tsai YH. 2017. "Degradation of Histamine by
453	Lactobacillus Plantarum Isolated from Miso Products." Journal of Food Protection 80 (10):
454	1682–88.

455	Lee GI, Lee HM, Lee CH. 2012. "Food Safety Issues in Industrialization of Traditional Korean
456	Foods." Food Control 24 (1): 1–5.
457	Lee JH, Jin YH, Park YK, Yun SJ, Mah JH. 2019. "Formation of Biogenic Amines in Pa (Green
458	Onion) Kimchi and Gat (Mustard Leaf) Kimchi." Foods 8 (3): 109.
459	Lee YC, Kung HF, Huang YL, Wu CH, Huang YR, Tsai YH. 2016. "Reduction of Biogenic Amines
460	during Miso Fermentation by Lactobacillus Plantarum as a Starter Culture." Journal of Food
461	Protection 79 (9): 1556–61.
462	Li-Jun Y, Li-Te L, Zai-Gui L, Tatsumi E, Saito M. 2004. "Changes in Isoflavone Contents and
463	Composition of Sufu (Fermented Tofu) during Manufacturing." Food Chemistry 87 (4): 587-
464	92.
465	Liu K. 2008. "14 - Food Use of Whole Soybeans." In Soybeans, edited by Lawrence A. Johnson,
466	Pamela J. White, and Richard Galloway, 441-81. AOCS Press.
467	Liu K. 2012. "Soybeans: chemistry, technology, and utilization". Springer.
468	Liu L, Chen X, Hao L, Zhang G, Jin Z, Li C, Yang Y, Rao J, Chen B. 2020. "Traditional Fermented
469	Soybean Products: Processing, Flavor Formation, Nutritional and Biological Activities."
470	Critical Reviews in Food Science and Nutrition 0 (0): 1–19.
471	Mendes R, Silva HA, Nunes ML, Empis JM. 2005. "Effect of Low-Dose Irradiation and Refrigeration
472	on the Microflora, Sensory Characteristics and Biogenic Amines of Atlantic Horse Mackerel
473	(Trachurus Trachurus)." European Food Research and Technology 221 (3): 329-35.
474	Meutia YR. 2016. "Standardization of Soy Sauce Sweet Product as Product Specialty of Indonesia."
475	Jurnal Standardisasi 17 (2): 147–56.
476	Nazhand A, Durazzo A, Lucarini M, Souto EB, Santini A. 2020. "Characteristics, Occurrence,
477	Detection and Detoxification of Aflatoxins in Foods and Feeds." Foods 9 (5): 644.
478	Novita NR, Abidin Z. 2020. "Supporting Factors of Tempeh Products Quality in Sukawening Village,
479	Dramaga District, Bogor Regency." Jurnal Pusat Inovasi Masyarakat (PIM) 2 (6): 925-930-
480	925–930.
I	20

481	Oh H, Ryu M, Heo J, Jeon S, Kim YS, Jeong D, Uhm TB. 2014. "Characterization of Biogenic
482	Amine-reducing Pediococcus pentosaceus Isolated from Traditionally Fermented Soybean
483	Products." Korean Journal of Microbiology 50 (4): 319-26.
484	Omotayo OP, Omotayo AO, Mwanza M, Babalola OO. 2019. "Prevalence of Mycotoxins and Their
485	Consequences on Human Health." Toxicological Research 35 (1): 1-7.
486	Pachlová V, Buňka F, Flasarová R, Válková P, Buňková L. 2012. "The Effect of Elevated
487	Temperature on Ripening of Dutch Type Cheese." Food Chemistry 132 (4): 1846-54.
488	Park YK, Lee JH, Mah JH. 2019. "Occurrence and Reduction of Biogenic Amines in Traditional
489	Asian Fermented Soybean Foods: A Review." Food Chemistry 278 (April): 1-9.
490	Qiu S, Wang Y, Cheng Y, Liu Y, Yadav MP, Yin L. 2018. "Reduction of Biogenic Amines in Sufu
491	by Ethanol Addition during Ripening Stage." Food Chemistry 239 (January): 1244-52.
492	Renes E, Diezhandino I, Fernandez D, Ferrazza RE, Tornadijo ME, Fresno JM. 2014. "Effect of
493	Autochthonous Starter Cultures on the Biogenic Amine Content of Ewe's Milk Cheese
494	throughout Ripening." Food Microbiology 44 (December): 271-77.
495	Restuccia D, Spizzirri UG, Puoci F, Picci N. 2015. "Determination of Biogenic Amine Profiles in
496	Conventional and Organic Cocoa-Based Products." Food Additives & Contaminants: Part A
497	32 (7): 1156–63.
498	Rohm B, Scherlach K, Möbius N, Partida-Martinez LP, Hertweck C. 2010. "Toxin Production by
499	Bacterial Endosymbionts of a Rhizopus Microsporus Strain Used for Tempe/Sufu
500	Processing." International Journal of Food Microbiology 136 (3): 368-71.
501	Ruiz-Capillas C, Herrero AM. 2019. "Impact of Biogenic Amines on Food Quality and Safety."
502	<i>Foods</i> 8 (2): 62.
503	Samtiya M, Aluko RE, Dhewa T. 2020. "Plant Food Anti-Nutritional Factors and Their Reduction
504	Strategies: An Overview." Food Production, Processing and Nutrition 2 (1): 6.
505	Santos MS. 1996. "Biogenic Amines: Their Importance in Foods." International Journal of Food
506	Microbiology 29 (2–3): 213–31.
I	21

507	Seo SH, Cho SJ. 2016. "Changes in Allergenic and Antinutritional Protein Profiles of Soybean Meal
508	during Solid-State Fermentation with Bacillus Subtilis." LWT 70 (July): 208-12.
509	Shim JM, Lee KW, Yao Z, Kim HJ, Kim JH. 2016. "Properties of Doenjang (Soybean Paste) Prepared
510	with Different Types of Salts." Journal of Microbiology and Biotechnology 26 (9): 1533-41.
511	Shin DH, Kwon DY, Kim YS, Jeong DY. 2012. "Science and Technology of Korean Gochujang".
512	Seoul: Public Health Edu
513	Shin DS, Park CH, Choi ID, Lee SK, Park JY, Kim NG, Choi HS. 2019. "Quality Properties of Soy-
514	paste Soybean Cultivar for Fermented Soybean Products." The Korean Journal of Food And
515	Nutrition 32 (2): 114–21.
516	Singh B, Karan R, Singh V. 2014a. "Microbial quality and safety of Axone- Akhuni, a fermented
517	soybean food of Nagaland". Noto-are Med 2014:13
518	Singh TA, Devi KR, Ahmed G, Jeyaram K. 2014b. "Microbial and endogenous origin of fibrinolytic
519	activity in traditional fermented foods of Northeast India. Int Food Res J 55:356-362.
520	https://doi.org/10.1016/j.foodres.2013.11.028
521	Shukla S, Park HK, Kim JK, Kim M. 2010. "Determination of Biogenic Amines in Korean
522	Traditional Fermented Soybean Paste (Doenjang)." Food and Chemical Toxicology 48 (5):
523	1191–95.
524	Shukla S, Park J, Park JH, Kim MK, Park S, Dubey A, Jeon J, Khang Y, Kim M. 2017. "Evaluation
525	of Fungal Microflora for Aflatoxin Producing Possibility in Novel Quality Meju Fermented
526	with Single and/or Multiple Additions of Nelumbo Nucifera, Ginkgo Biloba, and Allium
527	Sativum Extracts." Journal of Food Safety 37 (4): e12368.
528	Sivamaruthi BS, Kesika P, Chaiyasut C. 2019. "Toxins in Fermented Foods: Prevalence and
529	Preventions—A Mini Review." Toxins 11 (1): 4.
530	Stadnik J, J Dolatowski Z. 2010. "Biogenic Amines in Meat and Fermented Meat Products." Acta
531	Scientiarum Polonorum Technologia Alimentaria 9 (3).
532	https://www.food.actapol.net/volume9/issue3/abstract-1.html.

2	1	,
4		4

Sugawara E. 2010. "Fermented soybean pastes miso and shoyu with reference to aroma," in
Fermented Foods and Beverages of the World, eds J. P. Tamang and K. Kailasapathy, (New
York, NY: CRC Press, Taylor and Francis Group), 225-245. doi: 10.1201/ebk1420094954-
<u>c7</u>
Tamang JP, Shin DH, Jung SJ, Chae SW. 2016. "Functional properties of microorganisms in
fermented foods". Food Microbiol 7:578
Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, Mayo B, Westerik N, Hutkins R. 2020.
"Fermented Foods in a Global Age: East Meets West." Comprehensive Reviews in Food
Science and Food Safety 19 (1): 184-217.
Thakur A, Sharma V, Thakur A. 2019. "An Overview of Anti-Nutritional Factors in Food," January.
Wang LJ, Li D, Zou L, Dong Chen X, Cheng YQ, Yamaki K, Li LT. 2007. "Antioxidative Activity
of Douchi (A Chinese Traditional Salt-Fermented Soybean Food) Extracts During Its
Processing." International Journal of Food Properties 10 (2): 385-96.
Wang LJ, Yin LJ, Li D, Zou L, Saito M, Tatsumi E. 2007. "Influences of Processing and NaCl
Supplementation on Isoflavone Contents and Composition during Douchi Manufacturing."
Food Chemistry 101 (3): 1247–53.
"Worldwide Regulations for Mycotoxins in Food and Feed in 2003." n.d. Accessed July 5, 2021.
http://www.fao.org/3/y5499e/y5499e07.htm.
Xiang H, Sun-Waterhouse D, Waterhouse GI, Cui C, Ruan Z. 2019. "Fermentation-Enabled Wellness
Foods: A Fresh Perspective." Food Science and Human Wellness 8 (3): 203-43.
Yang H, Yang L, Zhang J, Li H, Tu Z, Wang X. 2019a. "Exploring functional core bacteria in
fermentation of a traditional Chinese food, Aspergillus-type douchi". PLoS One 14
(12):e0226965. https://doi.org/10.1371/journal.pone. 0226965
Yang J, Wu XB, Chen HL, Sun-Waterhouse D, Zhong HB, Cui C. 2019b. "A value- added approach
to improve the nutritional quality of soybean meal by product: enhancing its antioxidant

558	activity through fermentation by Bacillus amyloliquefaciens SWJS22. Food Chem 272:396-
559	403. https://doi.org/10.1016/j.foodchem.2018.08.037
560	Zain_ME. 2011. "Impact of Mycotoxins on Humans and Animals." Journal of Saudi Chemical
561	Society 15 (2): 129–44.
562	Zhang Q, Lin S, Nie X. 2013. "Reduction of Biogenic Amine Accumulation in Silver Carp Sausage
563	by an Amine-Negative Lactobacillus Plantarum." Food Control 32 (2): 496-500.
564	Zhang YT, Yu B, Lu YH, Wang J, Liang JB, Tufarelli V, Laudadio V, Liao XD. 2017. "Optimization
565	of the Fermentation Conditions to Reduce Anti-Nutritive Factors in Soybean Meal." Journal
566	of Food Processing and Preservation 41 (5): e13114.
567	Zhao H, Wang Y, Zou Y, Zhao M. 2013. "Natural Occurrence of Deoxynivalenol in Soy Sauces
568	Consumed in China." Food Control 29 (1): 71-75.
569	Zheng L, Li D, Li ZL, Kang LN, Jiang YY, Liu XY, Chi YP, Li YQ, Wang JH. 2017. "Effects of
570	Bacillus Fermentation on the Protein Microstructure and Anti-Nutritional Factors of Soybean
571	Meal." Letters in Applied Microbiology 65 (6): 520-26.
572	Zhi Y, He K, Sun T, Zhu Y, Zhou Q. 2015. "Assessment of Potential Soybean Cadmium Excluder
573	Cultivars at Different Concentrations of Cd in Soils." Journal of Environmental Sciences 35
574	(September): 108–14.
575	Zhi Y, Sun T, Zhou Q, Leng X. 2020. "Screening of Safe Soybean Cultivars for Cadmium
576	Contaminated Fields." Scientific Reports 10 (1): 12965.
577	
578	
579	
580	
581	
582	
583	
584 585	
585	24
	24

Berkala Hayati

ORIGINALITY REPORT

ORIGINA	ALITY REPORT				
2 SIMILA	3% ARITY INDEX	15% INTERNET SOURCES	21% PUBLICATIONS	4% STUDENT PAR	PERS
PRIMAR	Y SOURCES				
1	"Safety c	Chen, Xiuyan Z of Fermented Pi ", Elsevier BV, 2	roducts Based		2%
2	link.sprir	•			2%
3	Mah. "Oo amines i	young Park, Jae ccurrence and r n traditional As foods: A reviev	reduction of bi ian fermented	ogenic	1 %
4	dokumer Internet Source				1%
5	amines f	ici, Abdullah Kh ormation and t ed foods", BIO \	heir importan	ce in	1 %
	MAAAAA Deb	ni nlm nih gov			4

7	www.mdpi.com Internet Source	1%
8	Simon-Sarkadi, L "Effect of high hydrostatic pressure processing on biogenic amine content of sausage during storage", Food Research International, 201207 Publication	1 %
9	Submitted to Higher Education Commission Pakistan Student Paper	1 %
10	Mohamed E. Zain. "Impact of mycotoxins on humans and animals", Journal of Saudi Chemical Society, 2011 Publication	1%
11	Y.T. Zhang, B. Yu, Y.H. Lu, J. Wang, J.B. Liang, V. Tufarelli, V. Laudadio, X.D. Liao. "Optimization of the Fermentation Conditions to Reduce Anti-Nutritive Factors in Soybean Meal", Journal of Food Processing and Preservation, 2017 Publication	<1 %
12	Flávio Henrique Vasconcelos de Medeiros, Samuel Julio Martins, Tiago Domingues Zucchi, Itamar Soares de Melo et al. "Biological control of mycotoxin-producing molds", Ciência e Agrotecnologia, 2012 Publication	<1 %

13	L. Simon Sarkadi. "Biogenic Amines in Fermented Foods and Health Implications", Elsevier BV, 2017 Publication	<1%
14	Sang Yoo Lee, So Young Woo, So Young Ryu, Hyun Ee Ok, Hyang Sook Chun. "Aflatoxins in Doenjang, a Traditional Korean Fermented Soybean Paste: A Safety Perspective", American Chemical Society (ACS), 2019 Publication	<1%
15	onlinelibrary.wiley.com	<1%
16	Byung Hee Chun, Kyung Hyun Kim, Sang Eun Jeong, Che Ok Jeon. "The effect of salt concentrations on the fermentation of doenjang, a traditional Korean fermented soybean paste", Food Microbiology, 2020 Publication	<1 %
17	archive.org	<1%
18	www.soyinfocenter.com	<1%
19	fppn.biomedcentral.com	<1%
20	www.frontiersin.org	<1%

Submitted to Georgetown University Student Paper

21

<1%

22	Shruti Shukla, Juyeon Park, Jung Hyun Park, Min Kyeong Kim et al. " Evaluation of fungal microflora for aflatoxin producing possibility in novel quality fermented with single and/or multiple additions of , , and extracts ", Journal of Food Safety, 2017 Publication	<1 %
23	www.indianjournals.com	<1%
24	annalsmicrobiology.biomedcentral.com	<1%
25	res.mdpi.com Internet Source	<1%
26	Ggot-Im Lee, Hyo-Min Lee, Cherl-Ho Lee. "Food safety issues in industrialization of traditional Korean foods", Food Control, 2012 Publication	<1%
27	www.fao.org Internet Source	<1%
28	WWW.Science.gov Internet Source	<1%
29	mts.intechopen.com	<1%

30	Shuang Qiu, Ying Wang, Yongqiang Cheng, Yan Liu, Madhav P. Yadav, Lijun Yin. "Reduction of biogenic amines in sufu by ethanol addition during ripening stage", Food Chemistry, 2018 Publication	<1%
31	www.emerald.com	<1 %
32	"Food Safety in China", Wiley, 2017	<1%
33	hera.ugr.es	<1%
34	www.tandfonline.com	<1%
35	Bei-Zhong Han, Jia-Huai Wang, Frans M Rombouts, MJ Robert Nout. "Effect of NaCl on textural changes and protein and lipid degradation during the ripening stage of sufu, a Chinese fermented soybean food", Journal of the Science of Food and Agriculture, 2003 Publication	<1 %
36	Jyoti Prakash Tamang, Paul D. Cotter, Akihito Endo, Nam Soo Han et al. "Fermented foods in a global age: East meets West", Comprehensive Reviews in Food Science and Food Safety, 2020 Publication	<1 %

37	Xuezhi Bai, Bo Young Byun, Jae-Hyung Mah. "Formation and destruction of biogenic amines in Chunjang (a black soybean paste) and Jajang (a black soybean sauce)", Food Chemistry, 2013 Publication	< 1 %
38	ijmar.org Internet Source	<1%
<mark>39</mark>	library.wur.nl Internet Source	<1%
40	pubag.nal.usda.gov Internet Source	<1%
41	repositorium.sdum.uminho.pt	<1%
42	www.hindawi.com	<1 %
43	Shankar Prasad Sha, Mangesh Vasant Suryavanshi, Jyoti Prakash Tamang. "Mycobiome Diversity in Traditionally Prepared Starters for Alcoholic Beverages in India by High-Throughput Sequencing Method", Frontiers in Microbiology, 2019 Publication	<1%
44	dspace.uevora.pt Internet Source	<1%

Internet Source

45	Internet Source	<1%
46	etd.aau.edu.et Internet Source	<1%
47	suaire.sua.ac.tz Internet Source	<1%
48	www.efsa.europa.eu	<1 %
49	Hau Yin Chung. " Volatile Components in Fermented Soybean () Curds ", Journal of Agricultural and Food Chemistry, 1999 Publication	<1%
50	amb-express.springeropen.com	<1%
50 51		<1 % <1 %
Ξ	Internet Source	<1 % <1 % <1 %
51	Internet Source coek.info Internet Source csu-cvmbs.colostate.edu	<1 % <1 % <1 %
51	Internet Source coek.info Internet Source csu-cvmbs.colostate.edu Internet Source epdf.tips	<1 % <1 % <1 % <1 %

- Jitesh Kumar, Nitish Sharma, Girija Kaushal, Sanjukta Samurailatpam, Dinabandhu Sahoo, Amit K. Rai, Sudhir P. Singh. "Metagenomic Insights Into the Taxonomic and Functional Features of Kinema, a Traditional Fermented Soybean Product of Sikkim Himalaya", Frontiers in Microbiology, 2019 Publication
- Seo, Sang-Hyun, and Seong-Jun Cho.
 "Changes in allergenic and antinutritional protein profiles of soybean meal during solid-state fermentation with Bacillus subtilis", LWT
 Food Science and Technology, 2016.
- Tamang, Jyoti. "Plant-Based Fermented Foods and Beverages of Asia", Handbook of Plant-Based Fermented Food and Beverage Technology Second Edition, 2012.
- ⁵⁹ "Handbook of cheese in health", Wageningen <1 % Academic Publishers, 2013

<1%

60 "Minimally Processed Refrigerated Fruits and Vegetables", Springer Science and Business Media LLC, 2017 Publication 61 L. Zheng, D. Li, Z.-L. Li, L.-N. Kang, Y.-Y. Jiang, X.-Y. Liu, Y.-P. Chi, Y.-Q. Li, J.-H. Wang. "Effects of fermentation on the protein microstructure and anti-nutritional factors of soybean meal ", Letters in Applied Microbiology, 2017 Publication

<1%

Tamang, Jyoti P., Koichi Watanabe, and
 Wilhelm H. Holzapfel. "Review: Diversity of
 Microorganisms in Global Fermented Foods
 and Beverages", Frontiers in Microbiology,
 2016.
 Publication

Exclude quotes	On	Exclude matches	Off
Exclude bibliography	On		